
Army DL Product Specifications

Summary of Change

Army DL Product Specifications
This minor revision, V2.1, dated 20 November, 2014--

o
Increased emphasis on reducing size of DL courseware. Introduced DL support repositories for “common access” to DL reference documents, supplemental material, etc. (para 4.2).

Army DL Product Specifications
Overview. This document presents the government mandated requirements for deliverable products created by contractors or other activities providing Army DL products, all of which are hereinafter referred to as developers. The majority of the applicable products will be web-based content that plays within a commercial Microsoft® browser environment. All other product solutions such as installable applications, required quality assessment documents, project documentation, etc. will be directly identified in the presentation section of the product. The order of presentation is generally from broadest coverage, starting with section 1, product deliverable packaging specifications, finishing with section 5, the non-credit providing presentation specifications.
1.0 Product Deliverable Specifications:
1.1 Installed Products (rare). For Army learning products with content that is installed and later accessed or executed by the learner using an operating system option or a unique Army DL product icon, the developer shall deliver an industry standard installation file which contains all necessary instructions and files that execute a complete installation without any manual file manipulation. All Army learning products delivered as installation files shall:

· Have a Control Panel integrated “uninstall” option which MUST remove all physical files placed on the host machine and also remove all controls and or launch icons delivered during installation. An “uninstall” standalone routine that is identified on the splash screen is an acceptable substitution.
· Have a standalone installation technical description file. At a minimum this file shall present detailed information concerning installation options and complete listings of file movements and file modifications for each installation option. In cases where complete or very near complete directories are copied, the directory name and brief file set description is sufficient, such as “/bin directory containing executable files” or “/bin directory of executable files with file inconus.dll or outconus.dll as appropriate”.
1.2 Packaged Products (typical). The developer shall deliver content following the SCORM® content packaging technical details as presented in the SCORM® Content Aggregation Model’s (CAM) book. The SCORM® CAM book describes packaging components or files used in a learning experience into a single compressed, structured file. The SCORM® CAM book presents two types of packaging profiles, the Resource Content Package Profile and the more complex Content Aggregation Content Package Profile. Each profile provides the details for creating SCORM® Package Interchange Files, or PIFs. For each Army content deliverable the developer shall combine logically determined learning object(s) or file set(s) into the appropriate PIF type.

The developer shall provide the government with the more complex Content Aggregation Content Package for Army DL products that are loaded into an LMS. The more complex package contains an organization section defining a Table of Contents which, by SCORM design, behaves in a similar manner from system to system. TCM TADLP approval is required for any modification or exemption of this requirement.
For all Army DL products that can be delivered to a learner without being loaded into an LMS, the developer shall provide the government with a Resource Content Package, a PIF without an organization section.
1.3 File Names and Folder Restrictions: The developer shall ensure that all files/folders in each and every PIF conform to the file/folder naming scheme in section “Content Design Specifics” of the SCORM® Business Rules. Additional requirements for Resource Content Packages:

· The developer shall ensure each Resource Content Package creates the required sub-folder structure upon using the full file extraction.

· Resource Content Packages shall require no more than two levels of folders created to deploy and install.
For example: the Army learning product content load operation may require creating a root folder and a sub-folder for each module. Resource Content Packages could then be copied to the correct sub-folder locations and a full file extraction of each Resource Content Package completes the installation.
1.4. PKZip requirements: SCORM® requires that the PIF be conformant with RFC 1951 [12]. In addition to this requirement, SCORM® mandates that the archive format be PKZip v2.04g (.zip). A v2.04g .zip file is conformant to RFC1951.
1.5 Meta-data shall be provided using SCORM® Meta-data specifications. Unless specifically identified as Army learning products that do not require meta-data, the developer shall develop top level or package level meta-data and aggregation meta-data for each item manifest tag including SCO items. The developer shall deliver all meta-data in manifest referenced files in accordance with the sections “Meta-Data” and “Programming Examples” of the SCORM® Business Rules. All Army learning products shall include a top level meta-data file.

· For Army learning products delivered in an installation file: A top level meta-data file shall be delivered describing the contents and operation of the installed Army learning product. This meta-data file shall be delivered in a sub folder to the installation file named “meta-data”. The “meta-data” folder shall follow SCORM PIF conventions by including all supporting schema files.

· For Army learning products delivered in a SCORM® Package Interchange File (PIF): The top level meta-data shall describe the PIF contents in its entirety.
2.0 Scripting and Coding Maintainability Requirements

The developer shall comply with the maintainability instructions and the code/script conventions presented below.

2.1 Maintainability. To allow easy editing and enhance readability by the government, all source code created and delivered for this IMI shall be designed and programmed using “open standards” as presented in the open source initiative web site, http://www.opensource.org.
2.1.1 Follow Open Standards Requirements. The developer shall create all source material using programming techniques consistent with open standards requirements for software:
· No Intentional Secrets: The developer MUST NOT withhold any detail necessary for interoperable implementation

· Availability: The developer must deliver the complete set of content source files to the government under royalty-free terms with no distribution restrictions.
· Patents: All patents involving any source objects, scripts, tagging or code in this learning content’s implementation MUST:
· be licensed under royalty-free terms for unrestricted use, or
· be covered by a promise of non-assertion when practiced by open source software
· Agreements: There MUST NOT be any requirement for execution of a license agreement, NDA, grant, click-through, or any other form of paperwork to deploy conforming implementations of any code in the learning content.
· No Open Source Requirement-Incompatible Dependencies: Implementation of the content MUST NOT require any other technology that fails to meet the criteria of this Requirement.
2.1.2 Scenarios. For all content deliverables that provide a scenario driven application for learner experience, the developer shall ensure the editing of delivered scenarios and the creation of additional scenarios is accomplished using tools approved for use on government computers. Unless the government provides a written exemption for a specific scenario type, the developer shall provide documentation that describes how to edit scenarios, how to add additional scenarios, and how each aggregated objective, lesson, module, etc. is constructed. Unless the Training the Government Training Developer task is not a requirement of this Task Order, scenario life cycle maintenance shall be a topic in the Train the Government Training Developer sessions. Examples of scenario types are (a), data flow driven or implementation scenarios and (b), event driven or quality scenarios.
2.2 Code/Script Naming Convention Guidelines. Identifier names should be clear and informative. The name of any identifier should succinctly describe the purpose of that identifier. Avoid abstract names (in a global context) that are likely to be reused by other parts of the system. Preferred method of identifying names from composite words, is by upper case first letter (Camel Casing or camelCasingStyle), with no underscores allowed (except for appending pointer identifiers etc.)
2.2.1 Function Names: Function names must identify as far as possible the action performed or the information provided by the function. “Obvious” names (e.g. “util”) for modules should be avoided. Module names should be kept short. Function names should normally be formed from two parts: an action (verb) and an object (noun) of the action. Examples of acceptable function names are chatCloseSession, gpsSetTime and driveIsActive.
2.2.2 Variable Names: The type and purpose of each variable should be evident within the source code in which it is used (e.g. the reader will expect counter to be an int, motorSet might be a BOOLEAN or an array representing a set – context will usually clarify this). Variable names should be short, but meaningful. The developer should create a variable or data definition comment section if they have any concerns the type and purpose of each variable is not clearly evident for context alone.

2.2.3 Commenting Guidelines: Always comment the scripts, xml, text and code in your content. Comments should document every decision that was made while building the instructional material. Every function and method within the source code should be preceded by a comment section summarizing the functionality in a manner that is understandable to an outside party. At each point where a choice was made about how to implement decision logic, place a comment describing that choice and why it was made. Additionally, comments should provide information that is not otherwise available from reading the content source files. Write comments at a higher level of abstraction than the scripts and code. Comments that only restate what is already obvious add nothing to the source files and should be avoided. Comments should not speak to how the scripts and code work, but should describe what it does. A blank line should precede all comments, and each comment should be aligned closely with the scripts and code to which they apply. Insert comments before the subject of the comment whether commenting a single line of script of a block of code; avoid comments on the same line with script or code
3.0 Web-based Content Development Specifications
3.1 Technology. The developer shall develop web-based content using common web stack technologies, such as XHTML, CSS and JavaScript, while ensuring compatibility with the target playing environment. The developer shall adhere to modern web development best practices as outlined in the World Wide Web Consortium (W3C) specifications for best practices for authoring HTML.

3.2 Web-based Content Requirements: All web-based content delivered to the Government shall comply with the World Wide Web Consortium (W3C) recommendation, Web Content Accessibility Guidelines (WCAG) 2.0, to achieve Level AAA conformance as described in the documentation. Content shall comply with the WCAG 2.0 guidelines, including:
· Guideline 1.4 Distinguishable with the exception of 1.4.8 Visual Presentation:
Make it easier for users to see and hear content including separating foreground from background.
· Guideline 2.1 Keyboard Accessible:
Make all functionality available from a keyboard.

· Guideline 2.3 Seizures:
Do not design content in a way that is known to cause seizures.

· Guideline 3.3 Input Assistance:
Help users avoid and correct mistakes.
· Guideline 4.1 Compatible:
Maximize compatibility with current and future user agents, including assistive technologies
The complete presentation of WCAG 2.0, including the W3C presentations for “How to Meet WCAG 2.0” and “Understanding WCAG 2.0”, is available at http://www.w3.org/TR/WCAG20/
3.3 Web-based Training and Education Content Playability Requirements. The developer shall develop the web-based content as required by Performance Work Statement (PWS) and must play in the Microsoft® Internet Explorer browser (hereafter referred to as IE browser) version or versions specified in the Army Golden Master at the time of the Task Order Request (TOR) request (which can be found on the Army Golden Master page at: https://www.us.army.mil/suite/page/130061) -AND- must play with the current release (not including alpha or beta releases) of IE browser as reported by Microsoft http://windows.microsoft.com/en-US/internet-explorer/products/ie/home at time of the PWS award.

4.0 SCORM Web-based Content Development Specifications

4.1 SCORM® Conformant Schema files and SCO Manifest File(s). The developer shall provide a SCORM® conformant Manifest file and SCORM® conformant schema files as part of the content package. The developer may leave the individual imsmanifest.xml files and SCORM® conformant schema files in their SCOs; however, when a SCO(s) is part of a higher level aggregation, these files are not required and the developer shall ensure these files are not included as resources in the top level imsmanifest file.

4.2 Resources. The developer shall create content aggregation content packages with SCOs that instruct/teach their respective objectives in context (all the instructional content and supporting reference material required to instruct/teach the instructional objective is contained within the aggregation package/SCO). The developer shall create content aggregation content packages so that all resources (assets, SCOs and content aggregations) are contained within the content aggregation content package and listed in the imsmanifest file. The developer shall minimize package size; electronically available reference documents (for example, pdf files) being provided to the learner for the sole purpose of additional reading or an in-depth understanding of the subject matter should not be included in the content aggregation content package. Rather, these documents shall be stored in an Army or other government hosted repository, such as the ALMS, which provides assurance of continued access. The ALMS repository provides common storage area for ARMY DL resources and shall be examined for candidate support documents to avoid duplicate submissions. The developer shall establish supporting document availability before Individual Trials, thereby avoiding any mandatory hyperlink adjustments after allowing learners to access the content. Supporting reference documents needed by the learner to answer one or more exam questions are except from the repository requirement. If this is the case, the developer shall include the section(s) of the document needed for the exam in the content aggregation content package and list the new documents on the imsmanifest file. The developer shall ensure files not required in the learning content (excluding files listed as exempt from removal in other paragraphs of this document) are not contained within the content aggregation content package.

4.3 SCORM® Run-Time Environment. The developer shall create content that uses the SCORM® Run-Time Environment. The activity providing Army Distributed Learning shall ensure all developed Sharable Content Objects (SCOs) implement the mandatory minimum SCORM® API calls and use SCORM® Data Model elements in accordance with the Army Business Rules found in “Army Business Rules for SCORM 2004 3rd Edition Conformant Couseware”. The developer shall use additional SCORM® Data Model elements as dictated by the course/lesson design. However, for proper functionality, the developer shall use SCORM discovery data elements such as “_children”, “_count”, etc to ensure all additional SCORM® Data Model elements used are supported by the hosting LMS.

4.4 SCORM® Meta-data. The developer shall create SCO and Content Aggregation meta-data in accordance with the paragraph Meta-data shall be provided using SCORM® Meta-data specifications in Section 1 of this document.
4.5 GettingStarted.html, Browsers, and Plugins. The developer shall display the following statement in the Minimum System Requirements help topic, accessible from every SCO: “This learning content is designed to operate properly in Microsoft® Internet Explorer. This learning content may not operate properly in other web browsers.” The developer shall also provide, within the Minimum System Requirements help topic, tests that verify the availability of required plug-ins. In the event that a plug-in is not available, the developer shall provide learners the option to install the plug-in directly, or be directed to a web page containing directions for users that do not have administrative rights. These directions shall include contacting the network or system administrator when assistance is required to install the appropriate plug-in.

In addition to the above, the developer shall provide a GettingStarted.html document, using the HTML 4.01 strict doctype declaration, that is loadable into the ALMS and available to the learner prior to launching content. This file shall include instructions on how to contact the Army Training Help Desk and complete operating instructions to include the following: (1) Minimum system requirements; (2) Desktop software configuration; (3) Applicable web browsers; (4) Required web browser plug-ins; and (5) browser configuration requirements.
NOTE: Including a GettingStarted.html file requirement is rescinded when ALL the information identified in the paragraph above is contained in a course Letter of Instruction (LOI) in cases where the LOI is loaded in the LMS as a required component of the course.
5.0 Non-credit Providing Presentation Specifications.
5.1 Accessing non-credit providing content: The developer shall create resource content packages in such a way that non-credit providing or sustainment content shall be accessible via a single entry point for the entire package. Each content chunk must be accessible via a single entry point. The non-credit providing content must be accessible “offline” from file storage devices, including removable media such as CD-ROMs, DVDs, and USB devices. Developers shall provide playability issues on any file storage devices or media restrictions hindering access to non-credit content, such as “will not play correctly from a read only file storage device” or “this courseware must be stored in a disc area with write privileges.
NOTE: An acceptable single access point solution as mentioned above is an HTML menu file that acts as a single access point for the package’s non-credit-providing content, provided the aforementioned HTML menu file provides access to each content object within the package.
5.2 Non-credit providing presentation shall be available from Web servers. The developer shall provide content in resource content packages that must be accessible from inside an LMS that provides the absolute URL of the root folder for the loaded Resource Content Package, i.e., requests a “startup” file be identified when uploading a compressed file (or any multi-file submission). These packages will also be Web available using the “startup” file as a launch URL when loaded directly on a Web server host.

5.3 Additional Non-credit providing content requirements: Additional functionality when the activity providing Army Distributed Learning is required to include in non-credit providing content
5.3.1 Page Navigation and Autoplay: The developer shall provide learners with a “Jump to a Page” capability on each and every page in the non-credit providing content if such a capability is not already available. The developer shall provide the government with a Start up file, autoplay.inf, (or files if necessary) in the root of each non-credit providing content package that will launch the entire package (using the required single point of access for the package). The developer shall build each non-credit producing content package such that if the package is exploded and written to the root folder of a DVD that package will self launch when the DVD is inserted into a drive configured to autoplay upon the insertion of the appropriate media.
5.4 Non-credit content display. The best scenario for non-credit content is that the credit content provides the non-credit content with little or no changes. However certain categories of training must be given special attention by the developer and instructional designer in order to satisfy the needs for a presentation intended to refresh rather that instruct. Two examples are; content operating independent of the LMS and very high interactivity level content. This content must be given special attention with the developer obtaining government guidance and approval. [image: image1.png]

