ATIA Compliance Standards
TRP-01-DO0021-D-20020304

[image: image9.png][image: image10.png]
ATIA Compliance Standards

Version 3.1

[image: image11.png]
CDRL: TRP-01-DO0021-D-20020304

19 April 2002

Prepared for

Army Training Support Center (ATSC)

Army Training Information Systems Directorate (ATISD)

Ft. Eustis, Virginia

Prepared by

Science Applications International Corporation

Advanced Systems Group

1710 SAIC Drive

McLean, Virginia 22102

Notice
This document supercedes all previous versions and all briefings, meetings, and discussions on the topic of Army Training Information Architecture (ATIA) compliance.

In May 2001, a coordination draft of an overview document, What it Means to be ATIA Compliant, was issued for the sole purpose of stimulating discussion on the factors that should be considered for ATIA compliance. There were a number of meetings, briefings, and discussion/working groups on the topic that produced versions 1.0 and 2.0 of this document. In light of the continuing concerns of some of the participants of those activities, the authors have attempted to define each of the four levels of ATIA Compliance in greater detail and specificity. This document is issued as the complete replacement for the overview and precursor documents listed above.

The sole determiner of ATIA Compliance is the U.S. Army Training Support Center (ATSC), Fort Eustis, Virginia.

As standards evolve and design of the Army Training Information Architecture progresses, the requirements for ATIA compliance may change. The user should ensure that he or she has the latest version of this document before applying its requirements for ATIA compliance. The document is available on the Army Training Support Center’s ATIMP web site, http://www.atimp.army.mil/.

There will be another scheduled update to this document published in February 2003 with adjustments to content made as necessary to accommodate results of performance testing and warrior familiarization and evaluation activities conducted on the IOC-03 ATIA-M Production Article during the period 31 October 2002 – 30 January 2003.

Preface

This document represents the culmination of operations research and engineering analyses of the extant ATSC training support systems. The objective of these analyses was to define an Army Training Information Architecture-Migrated (ATIA-M) to serve as the migration target for ATSC extant systems as they are systematically re-engineered. This re-engineering will occur by disassembly, partitioning and re-hosting or recoding as necessary to isolate and eliminate redundant functionality and to provide a single aperture with a unified user interface as well as a fully integrated database.

ATSC’s approach to the specification of ATIA standards compliance follows the DII COE standardization model, including the segmentation certification paradigm specified for the COE for COTS/GOTS segmentation. This document and all attachments and linked references represent a close working relationship between Government and Industry to leverage state-of-the-art information technologies and information management processes in a complex world. The graduated level of compliance scale in the COMPLIANCE LEVELS section of this document is intended to permit smooth (continuously interoperable legacy systems and interfaces), affordable migration of existing systems into ATIA compliance.

Direct comments on this document to:

Mr. Donald Gough

USATSC-ATISD

Building 3308

Ft. Eustis, VA 23604-5166

Phone : 757-878-7001 ext 6501

Fax : 757-878-4885

Email : Goughd@atsc.army.mil
Table of Contents

11.
Introduction

12.
Background

13.
Scope

14.
Standards Based ATIA

24.1
ATIA Technical Standards Suite

24.2
Platform

24.2.1
DII COE Kernel Platform Compliance (KPC) Program

34.3
Data

34.3.1
ATIA-M Enterprise Database (EDB)

34.3.1.1
Logical Data Model

34.3.1.2
Physical Data Model

34.3.2
Shareable Content Object Reference Model (SCORM)

34.3.2.1
Army SCORM Conformant Asset Definition

44.3.2.2
Definition Rationale by Sentence in Section 4.3.2.1

54.3.3
Army Learning Object (ALO)

64.4
Infrastructure

64.4.1
DII COE Level 5

64.4.2
JAVA 2 Platform, Enterprise Edition (J2EE) Software Architecture

74.4.3
ATIA Style Guide

74.4.4
DOD Encryption Standard for Browsers and Servers

74.4.5
DOD Mobile Code Policy

74.5
Software

74.5.1
Common Core Services (CCS) Automated Information System (AIS)

84.5.2
Digital Library / Data Repository (DLDR) AIS

84.5.3
Duplication of Functionality

84.5.4
ATIA Coding Standards

84.5.5
Object Blueprint

84.6
Network

84.7
Content Specifications

84.7.1
Document Type Definitions (DTD)

84.7.2
Content Development Standards

95.
ATIA Compliance Levels

95.1
Level 1 - Basic Compliance

95.1.1
Data

105.1.2
Infrastructure

105.1.3
Software

105.1.4
Network

105.2
Level 2 - Intermediate Compliance

105.2.1
Platform

105.2.2
Data

115.2.3
Infrastructure

115.2.4
Software

115.2.5
Network

115.3
Level 3 - Advanced Compliance

115.3.1
Data

115.3.2
Infrastructure

125.3.3
Software

125.3.4
Network

125.4
Level 4 - Full Compliance

125.4.1
Data

125.4.2
Infrastructure

125.4.3
Software

125.4.4
Network

126.
References

137.
Guidance Web Sites

148.
ANNEX A: Object Blueprint

148.1
Description

148.2
IOC-02 and Objects

158.2.1
Current Definition and Refinement

168.2.2
Individual Task Object and Purpose

178.3
IOC-03 Implementation (October 2002)

188.4
Mapping of the Initial Re-factoring to EJB 2.0 Constructs

198.5
Application of each IOC-03 service to an ATIA-M object.

198.5.1
Assign Access Control to Objects

208.5.2
XML Marshalling / Unmarshalling

218.5.3
Workflow Control / Life Cycle Management

228.6
List of Objects by Use Case

238.7
Object Services by Use Case

249.
ANNEX B: ATIA-M Java Coding Standards

249.1
Introduction

249.2
Background

249.3
Scope

249.4
DISA DII COE Java Conventions Guidance

259.5
Specifying the Class Search Path

269.6
Java Naming Requirements

279.7
Storing Class and Jar Files

289.8
Miscellaneous

3010.
ANNEX C: Java Coding Convention

3010.1
Naming Conventions

3010.1.1
General guidance

3010.1.2
Specific Guidance (per Java Construct):

3210.2
Documentation

3210.2.1
General Guidance:

3210.2.1.1
JavaDoc Comments

3310.2.1.2
C Style Comments

3310.2.1.3
Single Line Comments

3410.2.2
Minimum Documentation Requirements:

3810.3
Style

3810.3.1
General Guidance

3810.3.2
Definitions

3910.3.3
Indentation Guidance

3910.3.4
Use of import

4010.3.5
Java Source File– Style and Structure

4010.3.6
Class – Style and Structure

4110.3.7
Member Functions – Style and Structure

4110.3.8
Java Control Structures – Style and Structure

4110.3.9
Fields

4110.4
References:

4110.5
Design Patterns

4210.5.1
J2EE Design Patterns

4210.5.2
Code Templates

4210.5.3
Note On Coding Conventions

4210.5.4
General template usage guidelines:

4311.
ANNEX D: Army Learning Object (ALO) Specification Version 3.1

4311.1
PURPOSE

4311.2
DTD

4311.3
XML

4411.3.1
Style Sheet (XSL)

4411.4
DOCUMENT TREE ELEMENTS

4811.5
ELEMENT DEFINITONS

4811.5.1.1
army_learning_object

4911.5.1.2
course

5011.5.1.3
common_info

5011.5.1.4
title

5011.5.1.5
status_effective_date

5111.5.1.6
credit_qty

5111.5.1.7
est_duration_qty

5111.5.1.8
retake_qty

5211.5.1.9
component

5211.5.1.10
description

5311.5.1.11
plan_course_summary

5311.5.1.12
length

5311.5.1.13
instructor_ich

5411.5.1.14
max_class_size

5411.5.1.15
min_class_size

5411.5.1.16
est_ach

5511.5.1.17
phase

5511.5.1.18
module

5511.5.1.19
management_category_remark

5611.5.1.20
lesson

5711.5.1.21
lesson_plan (deprecated, 04/01)

5711.5.1.22
document

5711.5.1.23
doc_name

5811.5.1.24
published_date

5811.5.1.25
document_segment

5811.5.1.26
detail_name

5911.5.1.27
detail_content

5911.5.1.28
occupation

6011.5.1.29
occupation_name (Deprecated, 06/01)

6011.5.1.30
condition_text (deprecated, 04/01)

6011.5.1.31
facility_type (deprecated, 04/01)

6111.5.1.32
category_code

6111.5.1.33
facility_type_name

6211.5.1.34
learning_objective

6211.5.1.35
learning_objective_component

6211.5.1.36
description

6311.5.1.37
total_learning_steps (deprecated, 04/01)

6311.5.1.38
learning_step_activity

6411.5.1.39
step_name

6411.5.1.40
media

6411.5.1.41
instruction_content

6511.5.1.42
content_text

6611.5.1.43
instruction_duration

6611.5.1.44
instructor_qty (deprecated,04/01)

6611.5.1.45
materiel_item (deprecated, 04/01)

6711.5.1.46
item_qty

6711.5.1.47
item_mileage_usage_qty

6711.5.1.48
item_hour_usage_qty

6911.5.1.49
item_remarks

6911.5.1.50
task

6911.5.1.51
task_name

7011.5.1.52
task_component (deprecated,04/01)

7011.5.1.53
component_desc

7011.5.1.54
task_step

7111.5.1.55
performance_desc

7111.5.1.56
skill_knowledge (deprecated, 04/01)

7111.5.1.57
knowledge

7211.5.1.58
knowledge_desc

7211.5.1.59
skill

7211.5.1.60
skill_desc

7411.5.1.61
instruction_note

7411.5.1.62
note_desc (deprecated, 04/01)

7411.5.1.63
note_text

7511.5.1.64
position (deprecated, 04/01)

7511.5.1.65
posn_name

7511.5.1.66
posn_desc

7611.5.1.67
reference_document

7611.5.1.68
media

7611.5.1.69
media_ref

7711.5.1.70
media_item

7711.5.1.71
media_name

7811.5.1.72
media_desc

7811.5.1.73
access_name

7811.5.1.74
narrative

7911.5.1.75
practical_exercise

7911.5.1.76
exams

7911.5.1.77
exam_ref

8011.5.1.78
examination

8011.5.1.79
basic_desc

8111.5.1.80
general_scenario

8111.5.1.81
text

8111.5.1.82
point_weight_qty

8211.5.1.83
test_item_ref

8211.5.1.84
test_item_pool

8211.5.1.85
test_item

8311.5.1.86
scenario_desc

8411.5.1.87
set_scenario

8411.5.1.88
stem

8411.5.1.89
essay_test_item

8511.5.1.90
essay_response

8511.5.1.91
fillin_blank_test_item

8611.5.1.92
fillin_blank_item_response

8611.5.1.93
fillin_blank_set

8611.5.1.94
fillin_blank_answer

8711.5.1.95
fillin_blank_response

8711.5.1.96
true_false_test_item

8711.5.1.97
true_false_answer

8811.5.1.98
true_false_response

8811.5.1.99
multiple_choice_test_item

8911.5.1.100
distracter

8911.5.1.101
multiple_choice_answer_id

8911.5.1.102
multiple_choice_answer

9011.5.1.103
multiple_choice_response

9011.5.1.104
match_test_item

9011.5.1.105
match_set

9111.5.1.106
match_set_ord_id

9111.5.1.107
match_set_ord_text

9211.5.1.108
match_set_subord_id

9211.5.1.109
match_set_subord_text

9211.5.1.110
match_set_response

9411.6
ATTRIBUTE DEFINITIONS AND VALUES

9411.6.1.1
itro_code

9411.6.1.2
course_type

9511.6.1.3
contract_code

9511.6.1.4
plan_id

9611.6.1.5
number_id

9611.6.1.6
assoc_reason

9711.6.1.7
version

9811.6.1.8
target_num_id (deprecated,04/01)

9811.6.1.9
type_code

9911.6.1.10
status_code

9911.6.1.11
security_class_code

10011.6.1.12
credit_type

10011.6.1.13
mob_code (Deprecated, 06/01)

10111.6.1.14
examination_reason (Deprecated, 06/01)

10111.6.1.15
type_code

10211.6.1.16
strategy_code

10311.6.1.17
delivery_code

10311.6.1.18
management_category

10411.6.1.19
delivery_group (deprecated, 06/01)

10411.6.1.20
assigned_risk

10511.6.1.21
foreign_disclosure

10611.6.1.22
reason_code

10611.6.1.23
doc_id

10711.6.1.24
doc_category

10711.6.1.25
doc_type

10811.6.1.26
detail_id

10811.6.1.27
seq_id

10911.6.1.28
type_code

10911.6.1.29
assoc_reason (deprecated, 04/01)

11011.6.1.30
target_id

11011.6.1.31
target_lsn_id (deprecated, 04/01)

11111.6.1.32
type_code

11111.6.1.33
seq_id

11211.6.1.34
target_id

11211.6.1.35
target_lo_id (deprecated, 04/01)

11311.6.1.36
assoc_reason (deprecated, 04/01)

11311.6.1.37
method

11411.6.1.38
item_id

11511.6.1.39
requirement_code

11511.6.1.40
id

11611.6.1.41
type_code

11611.6.1.42
type_code

11711.6.1.43
record_id

11711.6.1.44
id

11811.6.1.45
id

11811.6.1.46
cat_code

11811.6.1.47
id

11911.6.1.48
type_code

11911.6.1.49
occupation_id

12011.6.1.50
occupation_reason

12011.6.1.51
occupation_type

12111.6.1.52
career_management_field (Deprecated, 06/01)

12211.6.1.53
officer_career_field (Deprecated, 06/01)

12311.6.1.54
posn_id

12311.6.1.55
sex_restriction

12411.6.1.56
identifier

12411.6.1.57
category_type_code

12511.6.1.58
file_type_code

12611.6.1.59
media_place

12711.6.1.60
exam_id

12711.6.1.61
exam_type

12811.6.1.62
exam_class_code

12911.6.1.63
performance_type

12911.6.1.64
test_type

13011.6.1.65
passing_score

13011.6.1.66
number_items

13011.6.1.67
scramble_questions

13111.6.1.68
max_minutes_allowed

13111.6.1.69
identifier

13211.6.1.70
seq_id

13211.6.1.71
set_indicator

13311.6.1.72
type_code

13311.6.1.73
question_type

13411.6.1.74
set_id

13411.6.1.75
set_seq_id

13511.6.1.76
weight

13511.6.1.77
scramble_set

13611.6.1.78
answer_code

13611.6.1.79
scramble_distracters

13711.6.1.80
type_code

13811.6.1.81
paragraph_seq

13811.6.1.82
indentation

13911.6.1.83
media_alias

13911.6.1.84
exam_alias

Table of Figures

9Figure 1. ATIA Compliance Levels

1. Introduction

Information exchange among heterogeneous Army training systems has long been difficult. Exchange and reuse of data and information often requires extensive manipulation and data translation. Courses and lessons developed with a variety of authoring tools have not been compatible with each other in terms of reuse or use with a variety of learning management systems. In an effort to remedy this problem, the Army Training Information Architecture (ATIA) was developed. This architecture is intended to facilitate the exchange and reuse of information through a common set of interchange standards, data object taxonomies, and software functional development guidelines.

2. Background

The ATIA consists of three sub-architectures in accordance with the Army Enterprise Architecture Guidance Document: ATIA Operational Architecture (ATIA-OA); ATIA Technical Architecture (ATIA-TA); and ATIA Systems Architecture (ATIA-SA). The ATIA-SA is divided into components represented by Automated Information Systems (AIS) that support, by applying a “self-organizing-to-task” operations concept, six ATIA-M User Configurations. The functionality of the architecture resides in nine AISs as software objects, frequently as Enterprise Java Beans (EJBs). These AISs are used as the building blocks for six user configurations. An analogy would be to compare the AISs to collections of LegoTM pieces. Each user configuration is assembled, as needed, from the component functions contained in the AISs. Data are not allocated to an AIS. All training data, including reference tables, are stored in the ATIA-M Enterprise Database (EDB). All software objects are part of the common architecture, subscribe to common development standards, and use the EDB as the common storage location. The physical instantiation of ATIA is called the ATIA-Migrated (ATIA-M).

Two AISs, Common Core Services (CCS) and Digital Library/Data Repository (DLDR), are common to all user configurations. The former provides much of the infrastructure services, such as login, security, and user interaction, while the latter manages the collection of finished training products in the Reimer Digital Library and the “bench stock” (courseware component parts) for training developers and other required data in the Data Repository. Access to and interoperability with ATIA-M is through CCS. Access to ATIA-M products and data is through DLDR.

3. Scope

This document provides a description of the four levels of Army Training Information Architecture (ATIA) compliance for development applications and one level of ATIA compliance for Commercial Off The Shelf (COTS) products. Modified COTS products are considered development applications.

4. Standards Based ATIA

The following paragraphs delineate standards needed for the development of ATIA compliant software / systems and objects.

4.1 ATIA Technical Standards Suite

The ATIA Technical Standards Suite http://www.atimp.army.mil/atxxi/tss.asp is provided for use by Army training information system developers, by Army training development activities, and by supporting contractors in developing Army training products. Standards guidance contained in technical specifications, including the ATIA Technical Architecture Profile, and implementing instructions directed in TRADOC Regulation 350-70, Systems Approach to Training (SAT) Management, Processes, and Products (TR 350-70), has been consolidated into this one-stop source.

· Specific automation/IMI training product development and implementation policy is contained in:

· TR 350-70, Chapter II-10, Training and Training Development (TD) Automation

· TR 350-70, Chapter VI-10, Interactive Multimedia Instruction (IMI) and Department of the Army Visual Information Production and Distribution (DAVIPD) Programs

· The following documents describe the technical implementing instructions to be followed for the development and delivery of Interactive Multimedia Instruction (IMI). It includes IMI instructions for design and development planning, authoring, media, and delivery.
· Interactive Multimedia Instruction (IMI) Implementing Instructions, http://atscserv5.atsc.army.mil/techmediastand.htm, POC: Jim Tripp trippj@atsc.army.mil.

· Publishing in the RDL, http://www.adtdl.army.mil/help/htmlstd/standards.html, POC: Barbara Neely neelyb@atsc.army.mil.

· Content Specifications (see Paragraph 4.7)

4.2 Platform

4.2.1 DII COE Kernel Platform Compliance (KPC) Program

This program establishes a process that encourages Information Technology (IT) industry vendors to provide DII COE Kernel Platform functionality in their applications platform products. DISA will investigate a vendor’s claim of compliance and make available to the public a list of applications platforms with DII COE Certificates of Validation.

An additional objective of this program relates to the Government Supplied Kernel Software (GSKS) included in the DII COE Kernel. This software provides features and functions that are essential to the operation of an applications platform within a distributed environment. ATIA requires these features to be provided within commercial operating system offerings.

On 30 June 1998, the KPC Program transitioned to Operational Status. The KPC Program operates as specified in the KPC Program document, and as modified by updates posted on the KPC website. A new version of the KPC Program document incorporating previous changes will be posted periodically on the KPC website.

Additional information on the KPC program may be obtained at http://diicoe.disa.mil/coe/kpc/KernelPlatformProgram.htm
4.3 Data

4.3.1 ATIA-M Enterprise Database (EDB)

The ATIA-M EDB is the repository of training and reference materials for all of Army Training. It is designed to capture data to support courseware development, task development, unit training, individual training, and numerous other functional areas of Army Training. The ATIA‑M Enterprise Database is comprised of a logical model, physical model (schema) and database implementation. The POC for technical information on either the logical or the physical model is Edie Colbert, colberte@atsc.army.mil.

4.3.1.1 Logical Data Model

The ATIA-M Enterprise Database is based on the Army Training Enterprise Model (ATEM) - a logical data model. The ATEM was developed by applying DoD data standardization in accordance with DOD Directive 8320.1. DoD approved data standards and reference metadata are incorporated. The Army Training Enterprise Model (ATEM) - Detailed Diagram (22 August 2000) may be found at http://www.atimp.army.mil/atia/atia-oa.asp under Supporting Products. It is available in both ERWin and PDF format.

4.3.1.2 Physical Data Model

A graphical representation of the ATIA-M EDB is also available. This entity-relationship diagram includes table and field metadata. The Army Training Enterprise Model-Physical (ATEM-P) Detailed Diagram (29 August 2000) may be found at http://www.atimp.army.mil/atia/atia-sa.asp under Supporting Products. It is available in both ERWin and PDF format.

4.3.2 Shareable Content Object Reference Model (SCORM)

The Advanced Distributed Learning (ADL) Initiative SCORM defines a Web-based learning “Content Aggregation Model” and “Run-time Environment” for learning objects. It is a reference model that references a set of interrelated technical specifications and guidelines designed to meet DOD’s high level requirements for Web-based learning content. These requirements include, but are not limited to, discoverability, reusability, accessibility, durability, and interoperability.

The current SCORM, v1.2, dated 1 October 2001, is based primarily on work developed by the Instructional Management Systems (IMS) Global Learning Consortium, Inc., the Aviation Industry CBT (Computer-Based Training) Committee (AICC), and the Institute for Electrical and Electronics Engineers (IEEE) Learning Technology Standards Committee (LTSC).

4.3.2.1 Army SCORM Conformant Asset Definition

An Army SCORM conformant Asset is a uniquely identifiable electronic representation of data that is required for playability of Interactive Multimedia Instruction (IMI) courseware or is required for delivery of training/doctrine content. All file elements, as defined in the SCORM v1.2 Content Packaging Specification, are Assets. A SCORM Asset may also be composed of multiple assets. When an Asset is composed of multiple assets, each Asset must have metadata. Each Asset must have SCORM Asset metadata, including as a minimum: general/title and description; lifecycle/contribute/role, centity, and date; metametadata/metadatascheme; technical/format, size, and location; and rights/cost and copyright and other restrictions. The definition does not explicitly address discoverability or reusability. Asset metadata supports discoverability/reusability, but the definition of an Asset is not dependent on discoverability or reusability. The user determines reusability; it is not a quality of an Asset.
4.3.2.2 Definition Rationale by Sentence in Section 4.3.2.1

1 An Army SCORM conformant Asset is a uniquely identifiable electronic representation of data that is required for playability of Interactive Multimedia Instruction (IMI) courseware or is required for delivery of training/doctrine content.
· Definition applies to both IMI Courseware and other training products.

· “Each of the meta-data application profiles are listed with the corresponding requirements for each of the meta-data elements. Note that these requirements do not imply that every Content Aggregation, SCO, or Asset must be described by meta-data.” (SCORM 2.2.4.4, emphasis added)
· “…required for playability…” statement implicitly excludes XML manifest files and metadata files as Assets.

2 All file elements, as defined in the SCORM v1.2 Content Packaging Specification, are Assets.
· Definition avoids listing specific file types and the resulting possible omission of some current or future file types.

· Definition is specifically tied to SCORM v1.2. Definition should be reevaluated to ensure its continued applicability when new SCORM versions are released.

3 A SCORM Asset may also be composed of multiple assets.
· Explicitly states an Asset may be composed of multiple files.

4 When an Asset is composed of multiple assets, each Asset must have metadata.
· Ensures that if an Asset is composed of multiple files, that the composite asset and all its component Assets contain metadata.

5 Each Asset must have SCORM Asset metadata, including as a minimum: general/title and description; lifecycle/contribute/role, centity, and date; metametadata/metadatascheme; technical/format, size, and location; and rights/cost and copyrightandotherrestrictions.
· Explicitly states that Assets require minimum metadata.

· Explicit listing of metadata elements to reduce referral to external documents. List includes SCORM “optional” Asset metadata elements required by the Army, these include lifecycle/contribute/role, centity, and date, and technical/size.*
The ADL Co-Laboratory has developed SCORM conformance test software, procedures, and supporting documents. These documents and the self-test conformance software may be downloaded from http://www.adlnet.org.

4.3.3 Army Learning Object (ALO)

Army Learning Object – Taxonomy -
Army Courseware consists of 5 basic levels of granularity. The levels and their relationships are as follows: (NOTE. PHASE is an optional sixth level that is a sub-division of COURSE and was incorporated into the ALO in version 2.0.)

COURSE

PHASE (Optional)

MODULE

LESSON

LEARNING OBJECTIVES

LEARNING STEPS

The expected use of the ALO XML document is to provide a standard interface method for all courseware development vendors to markup course metadata for a given course and the references to external physical content for the purpose of storing that course metadata/content to the ATIA physical database. At present the ALO focuses primarily on non-classroom courseware. The ALO is intended to facilitate moving courseware from a developer to a storage where courseware components (learning steps, objectives, lessons, etc.) can be reused, manipulated and reassembled into courseware components in a specified structure.
The ALO focuses primarily on the ATIA database data element requirements for a course structure, some textual content, assessment (testing), and references to external media items. It does not address content delivery (executable) metadata. It includes very specific elements related to Army Courseware content metadata for non-classroom instruction as well as the references to associated tasks and occupations (MOS).

As developers create courseware, they will provide the detailed content as prescribed herein in the ALO document tag formats. This document is then delivered with the courseware ‘executables content objects’ and the uncompressed media content files.

Each content level may contain multiple instantiations of its subordinate levels. In addition, each learning step will be composed of media items (media objects), text, and notes. The ALO Specification version 3.1 is located in ANNEX D (Paragraph 11)

4.4 Infrastructure

4.4.1 DII COE Level 5

The Defense Information Infrastructure (DII) Common Operating Environment (COE) concept is best described as an architecture, an approach for building interoperable systems, a reference implementation containing a collection of reusable software components, a software infrastructure for supporting mission-area applications, and a set of guidelines, standards, and specifications. The guidelines, standards, and specifications describe how to reuse existing software and how to properly build new software so that integration is seamless and, to a large extent, automated. In the absence of a Joint Systems Architecture (JSA), the Joint Technical Architecture (JTA) currently mandates use of the DII COE (a fundamental JSA component). The DII COE will be evolved as necessary to maintain compliance with mandated standards found in future JTA updates.

The COE is primarily concerned with the executable environment of a system and is specifically designed to be programming-language neutral. It does not state a preference of one language over another, but leaves the selection of a programming language to higher-level standards profile guidance and programmatic considerations. Any statements in the Integration & Runtime Specifications (I&RTS), which appear to state or imply a preference for one language over another, are unintentional.

The COE is a “plug and play” open architecture. The COE is not a system; it is a foundation for building an open system. Functionality is easily added to or removed from the target system in small manageable units, called segments. Structuring the software into segments is a powerful concept that allows considerable flexibility in configuring the system to meet specific mission needs or to minimize hardware requirements for an operational site. Site personnel perform field updates by replacing affected segments through use of a simple, consistent, graphically oriented user interface.

The DII COE specifications list eight levels of compliance. However, the minimal level of DII compliance is level 5. It is this level of compliance, or higher, that ATSC requires for ATIA level 3 or level 4 compliance certification. Specifications and other documentation on the DII COE may be found at http://diicoe.disa.mil/coe/.

4.4.2 JAVA 2 Platform, Enterprise Edition (J2EE) Software Architecture

Just as DISA and the Services are moving to object-oriented standards compliance for JAVA based mission applications development, so too the ATIA is utilizing the same software architecture which will be specified in the forthcoming DII COE; the JAVA 2 Platform, Enterprise Edition (J2EE) Version 1.2 http://java.sun.com/j2ee. The J2EE specification is defined by JavaSoft, a wholly owned subsidiary by Sun MicroSystems. The standard specifies the methods for building Enterprise Java applications (segments of AISs in the case of ATIA-M) and improves development, deployment, and maintenance of these types of applications. Included in the J2EE is a group of Enterprise API specifications, which facilitates application development. The key advantages of this architecture for an ATIA compliant application are:

· Applications can be deployed on any J2EE application server on any platform
· Maximizes portability for the US Army

· Avoids vendor lock-in on proprietary solutions

· Code is standardized

· Reduces learning curves and maximizes "shareability" of EJB structure

· Makes maintenance of code easier

· Applications can be customized when deployed by setting XML deployment descriptors

· Fosters re-usability

· Allows use of third-party components

The following is a list of the specifications that are included in the J2EE which govern software development. All may not be required for each application (AIS segment) development within ATIA.

· Enterprise Java Beans (EJB) Architecture
· Java Database Connectivity (JDBC)

· Remote Method Invocation (RMI)

· Java Naming and Directory Interface (JNDI)

· Java Transaction Service (JTS)

· Java Server Pages (JSP)
· Servlet
· Java Interface Definition Language (IDL)
· Java Message Service (JMS)
· Java Transaction API (JTA)
· JavaMail

· Java Management Extensions (JMX)
· JAXP/XML

4.4.3 ATIA Style Guide

The ATIA Style Guide version 2.0 is published on the ATIMP web site. Its purpose is to provide guidelines for the development of user interfaces for ATIA compliant software. ATIA-M will also use the BEA Portal application associated with WebLogic as a means to automate portal development and GUI design. Interface with this portal COTS product is necessary. ATSC is investigating the use of the User Interface Markup Language (UIML) for the graphical user interface of ATIA-M, but there is no requirement for using UIML in order to be ATIA compliant at any level. Information on UIML may be found at http://www.uiml.org/specs/index.htm and the POC is Dennis Baston, bastond@atsc.army.mil.

4.4.4 DOD Encryption Standard for Browsers and Servers

The current DOD standard for encryption using Secure Sockets Layer (SSL) is 128-bit.

4.4.5 DOD Mobile Code Policy

Information on the DOD Mobile Code Policy can be found at http://www.c3i.osd.mil/org/cio/doc/mobile-code11-7-00.html
4.5 Software

4.5.1 Common Core Services (CCS) Automated Information System (AIS)

The CCS AIS is the controlling mechanism and the entry point for users of the ATIA-M. One of the design principles of ATIA was to provide a single portal for users of all the various functionality of Army training. The CCS AIS provides a common entry aperture and common software services and utilities required by all of the ATIA-M configurations. An example of these type services includes login and application security. The application security restricts user access to software objects, preventing unauthorized access to system functionality.

Once inside ATIA-M, multiple portals may be used. Therefore, all ATIA compliant applications shall be accessible via CCS. The POC for additional information on CCS is Don Gough, Goughd@atsc.army.mil.

4.5.2 Digital Library / Data Repository (DLDR) AIS

The DLDR AIS is the collection of functionality that provides access to finished products maintained in the Reimer Digital Library (RDL) and to courseware component parts (“bench stock”), media objects, and other data maintained in the ATIA-M Data Repository. Its use is mandated for ATIA compliance in order to maintain the integrity of the ATIA Enterprise Database and the contributing federation of proponent databases. The POC for additional information on DLDR is Don Gough, Goughd@atsc.army.mil.

4.5.3 Duplication of Functionality

ATIA is an object-oriented, self-organizing to task architecture. One of the major premises of its design is maximizing reusability. Functionality is encapsulated in Enterprise Java Beans, which can be reused among multiple user configurations. Recognizing that some information management or training systems (e.g. ATRRS, CTIA, TADLP) that will interface with ATIA-M configurations, the CCS AIS and/or the DLDR AIS may need to also be self-sufficient in stand-alone uses, ATSC has provided for various levels of duplication of existing ATIA-M functionality that allow intermediate levels of ATIA compliance.

4.5.4 ATIA Coding Standards

ATIA JAVA coding standards are based on the J2EE, DII COE, and JTA-A. The guidance for ATIA JAVA Coding Standards is outlined in ANNEX B and C (Paragraph 9 and 10) of this document.

4.5.5 Object Blueprint

See Annex A (Paragraph 8.0)

4.6 Network

In order to be compliant at any level, the application must be able to run on the DOD NIPRNET.

4.7 Content Specifications

4.7.1 Document Type Definitions (DTD)

· Army Correspondence Course Exam http://www.atimp.army.mil/dtd/accpexam.dtd
· Army Learning Object - DTD v3.1 http://www.atimp.army.mil/dtd/master_LOM_31.dtd
4.7.2 Content Development Standards

· Army Learning Object Mapping (ATIA-M Enterprise Database Structure) http://www.atimp.army.mil/dtd/ALO-ATIA_mapping.xls
· Army Learning Object Specification v3.1 http://www.atimp.army.mil/dtd/ALO_spec31.htm
· Army Learning Object - XML Template v3.1 http://www.atimp.army.mil/dtd/master_LOM_31.xml

· Army Learning Object - XSL v3.1

http://www.atimp.army.mil/dtd/master_LOM_31.xsl
5. ATIA Compliance Levels

For development applications (including modified COTS), the U.S. Army Training Support Center assesses ATIA compliance in four levels: Basic, Intermediate, Advanced, and Full. In addition, one level of Basic compliance is described for unmodified Commercial Off The Shelf (COTS) products. These levels represent a progressive migration of adherence to the standards described in the following pages. Figure 1 compares the various levels of ATIA compliance.

	 Compliance Level

Component
	Level 1 Basic
	Level 2 Intermediate
	Level 3 Advanced
	Level 4 Full
	COTS (Level 1C)

	Platform

· DISA DII COE Kernel Platform Compliance1
	
	X
	
	
	

	Data

· ATIA-M Enterprise Database

· Physical Data Model

· Logical Data Model

· Content Format
	X
	X

X
	X

X

X
	X

X

X

X
	Interface

Interface

X

	Infrastructure

· DII COE Level 52
· J2EE Compliant

· ATIA Style Guide

· DOD Encryption Standard (128-bit)

· DOD Mobile Code Policy
	X

X

X
	X

X

X

X
	X

X

X

X

X
	X

X

X

X

X
	Interface

X

X

	Software

· CCS

· DLDR

· EJB Duplication % limit

· ATIA Coding Standards

	X

X

80

X

	X

X

50

X

	X

X

20

X

	X

X

0

X

	Interface

Interface

	Network (NIPRNET)
	X
	X
	X
	X
	X

1Included in DII COE Level 5 compliance

2Includes DII COE Kernel Platform

Figure 1. ATIA Compliance Levels

5.1 Level 1 - Basic Compliance

5.1.1 Data

· The applications data output must conform to ATIA XML and other ATIA packaging specifications. At this time the following specifications apply to courseware and learning object content:

· Advanced Distributed Learning Initiative Shareable Content Object Reference Model (SCORM), version 1.2, dated 1 October 2001, the Army Learning Object (ALO) specification, version 3.1, dated 7 June 2001,

· Army Learning Object (ALO) – DTD version 3.1.

[COTS products must be capable of using courseware and learning object content which conform to the SCORM and ALO specifications.]

5.1.2 Infrastructure

· The application must conform to the J2EE specification, version 1.3. [COTS products must be interoperable with the J2EE environment.]

· The application must comply with DOD encryption standards for browsers and servers, currently 128-bit encryption.

· The application must comply with the DOD Mobile Code policy.

5.1.3 Software

· The application must use the ATIA-M Common Core Services (CCS) Automated Information System (AIS) for user login and authentication, access control, business rules, administration, and security. [COTS products must be able to be invoked by the CCS.]

· The application must use the Digital Library / Data Repository (DLDR) AIS for access to the ATIA-M Enterprise Database. [COTS products must use the DLDR for any data written to the EDB.]

· No more than eighty (80) percent of the functionality of the application may duplicate existing functionality contained in ATIA-M Configuration and AIS Enterprise Java Beans. [This requirement does not apply to unmodified COTS products, but does apply to modified COTS products.]

· The application must comply with ATIA coding standards. [This requirement does not apply to unmodified COTS products, but does apply to modified COTS products.]

5.1.4 Network

· The application must run on the NIPRNET.

5.2 Level 2 - Intermediate Compliance

5.2.1 Platform

· The application must use a DISA DII COE Kernel Platform Certified (KPC) server.

5.2.2 Data

· The application’s database must conform to the ATIA-M Enterprise Database (EDB) logical data model. Conforming to the ATIA-M EDB logical model will ensure that data can be mapped among applications/systems and other ATIA Level 2, 3, and 4 compliant systems.

· The applications data output must conform to ATIA XML and other ATIA packaging specifications. At this time the following specifications apply to courseware and learning object content:

· Advanced Distributed Learning Initiative Shareable Content Object Reference Model (SCORM), version 1.2, dated 1 October 2001, the Army Learning Object (ALO) specification, version 3.1, dated 7 June 2001,

· Army Learning Object (ALO) – DTD version 3.1.

5.2.3 Infrastructure

· The application must conform to the J2EE specification, version 1.3.

· The application must comply with DOD encryption standards for browsers and servers, currently 128-bit encryption.

· The application must comply with the DOD Mobile Code policy.

5.2.4 Software

· The application must use the ATIA-M Common Core Services (CCS) Automated Information System (AIS) for user login and authentication, access control, business rules, administration, and security.

· The application must use the Digital Library Data Repository (DLDR) AIS for access to the ATIA-M Enterprise Database.

· No more than fifty (50) percent of the functionality of the application may duplicate existing functionality contained in ATIA-M Configuration and AIS Enterprise Java Beans.

· The application must comply with ATIA coding standards.

5.2.5 Network

· The application must run on the NIPRNET.

5.3 Level 3 - Advanced Compliance

5.3.1 Data

· The application’s database must conform to the ATIA-M EDB logical data model.

· The application’s database must conform to the ATIA-M EDB physical data model. Conforming to the ATIA-M EDB physical model will ensure that data can be imported and exported among applications/systems and other ATIA Level 3, and 4 compliant systems.

· The applications data output must conform to ATIA XML and other ATIA packaging specifications. At this time the following specifications apply to courseware and learning object content:

· Advanced Distributed Learning Initiative Shareable Content Object Reference Model (SCORM), version 1.2, dated 1 October 2001, the Army Learning Object (ALO) specification, version 3.1, dated 7 June 2001,

· Army Learning Object (ALO) – DTD version 3.1.

5.3.2 Infrastructure

· The application must be compliant with DII COE level 5 requirements.

· The application must conform to the J2EE specification, version 1.3.

· The application must comply with DOD encryption standards for browsers and servers, currently 128-bit encryption.

· The application must comply with the DOD Mobile Code policy.

5.3.3 Software

· The application must use the ATIA-M Common Core Services (CCS) Automated Information System (AIS) for user login and authentication, access control, business rules, administration, and security.

· The application must use the Digital Library Data Repository (DLDR) AIS for access to the ATIA-M Enterprise Database.

· No more than twenty (20) percent of the functionality of the application may duplicate existing functionality contained in ATIA-M Configuration and AIS Enterprise Java Beans.

· The application must comply with ATIA coding standards.

5.3.4 Network

· The application must run on the NIPRNET.

5.4 Level 4 - Full Compliance

5.4.1 Data

· The application must use an implementation of the ATIA-M Enterprise Database.

5.4.2 Infrastructure

· The application must be compliant with DII COE level 5 requirements.

· The application must conform to the J2EE specification, version 1.3.

· The application must comply with DOD encryption standards for browsers and servers, currently 128-bit encryption.

· The application must comply with the DOD Mobile Code policy.

5.4.3 Software

· The application must use the ATIA-M Common Core Services (CCS) Automated Information System (AIS) for user login and authentication, access control, business rules, administration, and security.

· The application must use the Digital Library Data Repository (DLDR) AIS for access to the ATIA-M Enterprise Database.

· The application shall not duplicate any existing functionality contained in ATIA-M Configuration and AIS Enterprise Java Beans.

· The application must comply with ATIA coding standards.

5.4.4 Network

· The application must run on the NIPRNET.

6. References

Barker, Jacquie. Beginning Java Objects: From Concepts to Code. Mass Market Paperback; November 2000

Flanagan, David, et al. Java Enterprise in a Nutshell : A Desktop Quick Reference (Nutshell Handbook) O'Reilly & Associates; ISBN: 1565924835, September 1999

Jacobson, Ivar, et. al. Object-Oriented Software Engineering: A Use Case Driven Approach. Addison - Wesley. Reading Massachusetts, 1992.

Kruchten, Philippe., The Rational Unified Process: An Introduction., Addison - Wesley. Reading Massachusetts, 1998.

Perrone, Paul, Venkata S.R.K.R. Chaganti. Building Java Enterprise Systems with J2EE Sams; ISBN: 0672317958 June 7, 2000

Roman, Ed., Mastering Enterprise JavaBeans and the Java 2 Platform, Enterprise Edition, John Wiley & Sons Press . ISBN: 0471332291. September 24, 1999.

Texel, Putman P., Charles B. Williams. Use Case Combined with Booch, OMT UML., Prentice Hall PTR, Upper Saddle River, New Jersey. 1997

Vogel, Andreas, Madhavan Rangarao. Programming with Enterprise JavaBeans, JTS, and OTS: Building Distributed Transactions with Java and C++. John Wiley & Sons; ISBN: 0471319724 . April 13, 1999.

7. Guidance Web Sites

· General Guidance - http://www.atimp.army.mil/download/ATXXI/ATIA-TSP-msd.pdf
· ADCST Memorandum, 16 Aug 2000 - http://www.atimp.army.mil/publications/viewpub.asp?ID=276 (POC: Edie Colbert colberte@atsc.army.mil)

· ADTLP Replication and Distribution - http://www.atsc.army.mil/dld/RepDis.htm (POC: Jim Hughes hughesj@atsc.army.mil)

· TADLP Digital Training Facility Configuration - http://www.tadlp.monroe.army.mil/DTF Configuration.htm (POC: Nick Flaim; nick.flaim@monroe.army.mil)

· Classroom XXI Facility Configuration - http://www.tadlp.monroe.army.mil/crxxiconfiguration.htm (POC: Glenna Dobie glenna.dobie@monroe.army.mil)

· Distance Learning (DL) XXI Contract Statement of Work Template - http://www.atimp.army.mil/download/atxxi/IMISOWTemplate1Aug01.doc (POC: Ned Motter mottern@atsc.army.mil)

· Technical Architecture Profile, Version 1.4 - http://www.atimp.army.mil/publications/viewpub.asp?ID=286. (POC: Edie Colbert colberte@atsc.army.mil)

8. ANNEX A: Object Blueprint

8.1 Description

The ATIA-M object blueprint contains the information needed to develop an object for use throughout the ATIA-M configurations. It describes the essential characteristics of all ATIA-M objects. For example, all Java objects can generate a String representation of themselves. This is done by overriding the toString() method contained in Java’s root object (Object) from which all Java objects are derived. This example may seem trivial, but it guarantees that all Java classes have a toString() method and can therefore be output in a String representation. A more complex example is object serialization. The requirement is that all Java objects be streamable for storage in a file or transfer across a network. Java makes this possible via the java.io.Serializable marker interface or via the more complex writeObject/readObject API (with more ways coming soon). Any Java class that wants to be streamable can implement the pattern (blueprint) and get the capability (oversimplified in this case, but essentially correct). For ATIA-M, we have used patterns for application development. The ATIA-M architecture will apply patterns (blueprints) to object development.

8.2 IOC-02 and Objects

ATIA-M IOC-02 focused on developing the patterns needed for its six configurations and the user/use cases they support (Controller, Command, Delegate, Façade, DAO, Value Object). The intent of these patterns was twofold. The first purpose was to segregate the application into multiple architectural tiers (GUI, business logic, and data) to ensure that the application would be maintainable and would maximally use the J2EE framework. The second purpose was to isolate the higher levels of the application (i.e. code closer to the user) from the administrative burden related to the talking to the lower levels of the application (closer to the data). For example our DataAccessObject layer abstracted the database, and all database errors, into a single object API that higher-level objects used, thereby encapsulating the database in a single, well defined location in the architecture.
In the IOC-02 implementation of the entity objects model the business data was effectively lost. Most of the higher-level code was a thin wrapper around the DAO layer API, resulting in an inflexible architecture. Much of this is a consequence of over utilization of the Fast Lane Reader design pattern. Data was passed primarily as value objects, but no definition to the ATIA-M entity objects was applied. Current design patterns will be essential when applying security to objects, when adding workflow to objects, when binding objects to a portable XML representation, etc.

8.2.1 Current Definition and Refinement

To place the following discussion in an operationally useful context the ATIA-M Individal Training Configuration (ITC) will be used. ITC’s current approach (see Figure 2) uses coarse-grained EJBs and DAO objects to obtain information from the database. This information is assembled /“marshaled” into value objects for transport throughout ITC. The value objects represent the important objects that are used and would be the focal point for defining an ATIA-M object artifact. Currently this value object allows for assembling/marshaling at the EJB level or at the Session Façade level.

[image: image1.png]
Figure 2 ATIA-M Individual Training Configuration Object Management

The IOC-03 design will be descriptive enough to show how an object gets from the database to a value object. Since the value object in this design could be a package in which similar data is dumped, IOC-03 will distinguish objects that are important from objects that only exist for convenience of transport.

The “Individual Task” object for IOC-02 had the following EJB/Façade/DAO/Value Object dependencies: IndTaskEJB, TaskFacadeEJB, IndTaskDAO, TaskComponentDAO, TaskDAO, TaskMeasuresDAO, TaskStepsDAO, IndTaskCompositeValue, IndTaskValue, IndTaskValueList, IndividualTaskValue, TaskComponentValue, TaskMeasureValue, TaskStepValue, and TaskValue. Figure 3 is the UML class diagram of these classes with the exception of the DAO classes.

[image: image2.png]
Figure 3 UML Class Diagram

The DAO classes were intentionally omitted because they added a level of turbulence that was not required.

8.2.2 Individual Task Object and Purpose

IndividualTaskValue is an abstract base class that provides a common minimal set of data common to all individual tasks as well as a common set of methods. Concrete subclasses have a solid minimal starting point and will already be Serializable and Comparable. Subclasses can extend the basic information to create custom views, which is what we do with IndTaskCompositeValue and IndTaskValueList.

IndTaskValueList is a concrete subclass of IndividualTaskValue, but does not add detail; it merely implements the abstract. Its purpose is to contain only the required data for display in a pick list. It is not shown in this UML, but it is always wrapped by a ListChunk object and passed all the way to the user interface for display. For the ATIA-M Individual Task, this shallow view of an individual task will be used.

IndTaskCompositeValue provides a deep look at an individual task. This object is assembled by TaskFacadeEJB by calling IndTaskEJB for data. Note that there is need for more definition of how and by whom this object gets assembled.

TaskValue is a collection of data found in the Task table. This class is separated more for convenience then as a result of any plan.

IndTaskValue is a collection of data from the IndTask table. This is also for convenience.

TaskComponentValue contains the related parts of an individual task. It also maintains the discrete type of part (i.e. condition, standard, etc…).

TaskStepValue contains a performance step. In IndTaskCompositeValue this is stored as a custom collection.

TaskMeasureValue contains a performance measure. In IndTaskCompositeValue this is stored as a custom collection.

TaskFacadeEJB is the location of the business logic. It is also the location that we assemble an individual task object from its parts. Most of this is passed through to IndTaskEJB, but object assembly performs a significant amount of work.

IndTaskEJB controls all database access that gathers individual task information.

DAO objects are used to isolate the SQL calls to the database. They work on behalf of the IndTaskEJB, but touch all aspects of an individual task.

Using the objects above, the basic features of the overall individual task object can be described. It is a mechanism for persisting its data to the database (DAO and IndTaskEJB), and it can be marshaled into different views (shallow, deep) by an assembler (TaskFacadeEJB). Finally, the finished view of the object (the Value Object) can be passed throughout the system. This clearly indicates that all of the individual classes work together to provide the capabilities we expect from an individual task object.

8.3 IOC-03 Implementation (October 2002)

IOC-03 has more object requirements. Security at the object level, sending an object to an external system via web services (marshaling and un-marshalling to/from XML), un-marshalling a value object to the database, life cycle management of an object, versioning, and publishing, are examples of a few.

ATIA-M objects must provide services and mechanisms with assignment of responsibility to one of the parts (classes) of the ATIA-M object. For example, marshaling an individual task from the database to a value object is the responsibility of the TaskFacadeEJB component. For example, TaskFacadeEJB could be assigned the responsibility of un-marshaling a value object back to the database. This means that the IndTaskEJB’s only job would be to persist/retrieve data to/from the database. It also means that the only value objects relevant to the individual task (as an ATIA-M object) are IndividualTaskValue, IndTaskValueList, and IndTaskCompositeValue. These three classes represent the shallow and deep views of the individual task.

[image: image3.png]
Figure 4 Re-factoring of the individual task object

Figure 4 represents a re-factoring of the individual task object as an ATIA-M object that provides persistence, marshaling, and discovery with assignment of responsibility to each component. Each object at design time will use either the inheritance or implementation of an interface mechanism.

8.4 Mapping of the Initial Re-factoring to EJB 2.0 Constructs

Entity objects in IOC-03 will be implemented as EJB 2.0 local entity beans based on the container-managed persistence capabilities found in Weblogic 6.1/Toplink 4.0. So IndTaskEJB, as shown in Figure 4 would be a fine-grained entity object that models the data for an IndividualTask. IOC-03 will utilize the EJB 2.0 container-managed relationship capability to model the relationship between a task and it’s component steps, performance measures, and other related data. This IndTaskEJB is an abstraction that models the data associated with a task.
TaskFacadeEJB would be a coarse-grained EJB 2.0 session bean accessed via the normal remote interfaces. Clients outside of the EJB tier would normally interact with the IndTask object via this coarse-grained, business-logic oriented API. One example service offered at the façade would be the construction of value object representations of the task data. A second service would be methods that would allow the client to manipulate the task data and it’s relationships.
8.5 Application of each IOC-03 service to an ATIA-M object.

An IOC-03 service in this context refers to a service or mechanism that is designed to work on an object. For example, the requirement that we are able to represent an object in XML is a service that the object should provide. Also, the requirement that we add security or access control to an object is a service that the object should provide. Lets take each service, in turn, and apply a design that can satisfy the requirement.

8.5.1 Assign Access Control to Objects

(ACL modeling:TBD.)

Access control lists (ACLs) are pieces of data that we attach to a system resource or an object that restricts access. The access control list is itself an object (it has data and an interface). The ACL “belongs to” its parent (it is a contains by value). All ATIA-M objects will have an ACL.

[image: image4.png]
Figure 5
Figure 5extends the example object by introducing a base class, ATIA-M, that provides high level capabilities and data common to all ATIA-M objects. The IndividualTaskValue abstraction may not be needed since the general capabilities can be moved upward or downward (Serializable and Comparable interfaces may be implemented by ATIA-M, while data definition can move to the concrete subclasses). ATIA-M will add the AccessControlList class that encapsulates our object level security. The specifics of implementation are left open, but the ACL is an attribute of the value object instantiated from either IndTaskComponentValue (deep) or IndTaskValueList (shallow).

8.5.2 XML Marshalling / Unmarshalling

ATIA-M will be capable of marshaling and unmarshalling to / from the database and will extend that capability to include XML documents. ATIA-M will also have the capability of transporting our object out of the ATIA universe, then recovering it at a later time. XML offers the capability of retaining structure as the data specific to an object is transported.

[image: image5.png]
Figure 6 ATIA-M Implementation of the Transportable Interface

In Figure 6 ATIA-M implements the Transportable interface. All ATIA-M objects must implement toXML() and parseXML(). The transport itself is provided by a web service architecture (AtiaJaxmServlet, IndTaskServiceEJB).

8.5.3 Workflow Control / Life Cycle Management

All ATIA-M objects will have a status (as defined by their particular usage), and a workflow (also defined by the usage). The mechanisms are related, but different. Status changes will be represented by providing a concrete subclass of Status that defines all the unique state transitions, and must implemented by a Statusable interface to provide a common method that encapsulates the specific state change business logic on a per object basis.

[image: image6.png]
Figure 7
The UML in Figure 7 represents the skeletal framework for these mechanisms. The status at the Value object level is a mechanism to report the current status, whereas a real status update requires updates to the data model. ATIA-M implements status as a 1-1 container managed relationship, so if a task changes from proposed to an approved state, the back-end data updates would automatically occur. At the façade level, implementation will be at the associated business logic that accompanies the state change.
[image: image7.png]
Figure 8
Figure 8 shows the expansion of the value object in blue. Most of the mechanisms will be addressed via Java objects vice components or mechanisms.

8.6 List of Objects by Use Case

1. Collective Task

2. Individual Task

3. Lesson Plan

4. Document (more likely a document is just an object i.e. Lesson Plan document)

5. Doctrine

6. Collective Task Selection

7. Unit CATS Training Event

8. Unit CATS (if this is different from 7, use case implies that it is)

9. Warfighter TSP

10. Career Map

11. Course

12. Subcourse (might be same as course)

13. Active Enrollments

14. Historical Enrollments (probably the same class as 13 : Enrollments)

15. Subcourse Test

16. User Feedback

17. Organization

18. Person

19. Material Item

20. TADSS

21. AUTL

22. Career Management Field

23. Occupation Specialty

24. Duty Position

25. Additional Skill Identifier

26. Special Qualification Identifier

27. User

8.7 Object Services by Use Case

1. XML representation for web services transport

2. Security ACL

3. Database Persistence

4. Life Cycle Management

5. Workflow Control (and versioning)

6. Discoverable using complex filtering.

7. Publish

8. Staff

9. ANNEX B: ATIA-M Java Coding Standards

9.1 Introduction

Information exchange among the heterogeneous Army training systems has long been a problem, especially with respect to the reuse of courses and lessons developed with a variety of authoring tools. In an effort to remedy this problem, the Army Training Information Architecture (ATIA) was developed. This architecture is intended to ease the exchange and reuse of information through a common set of interchange standards, taxonomy, and development guidelines.

9.2 Background

The ATIA is divided into components represented by Automated Information Systems (AIS) and User Configurations. The functionality of the system resides in the nine AISs as software objects, frequently as Enterprise Java Beans (EJBs). These are used as the building blocks for the six user configurations. An analogy would be to compare the AISs to collections of LegoTM pieces. Each user configuration is assembled from the component functions contained in the AISs as needed. Data are not allocated to an AIS. All training data are stored in the enterprise database (including reference tables). All software objects are a part of the common architecture, subscribe to common development standards, and use the enterprise database as the common storage location.

This Annex outlines the standards currently being used to develop the User Configuration builds for the ATIA-Migration (ATIA-M). As with any standards, updates to these will occur during the life cycle of the system and appropriate adjustment in the development specifications will occur. In the interest of brevity, this annex contains the URLs for specific documentation. For example, the Java 2 Platform, Enterprise Edition (J2EE) specification is in excess of 600 technical pages.

9.3 Scope

This Annex provides a description of the Army Training Information Architecture Java Coding Standards. It applies to the development of the J2EE training mission application that are developed with the intent to be shared across the Army in a distributed environment to facilitate distance learning/training.

9.4 DISA DII COE Java Conventions Guidance

This section contains guidance for using Java in COE segments whether or not they are part of a Web-based application. Java and related technologies (e.g., security) are rapidly evolving. Further guidance will be provided in future I&RTS updates.

9.5 Specifying the Class Search Path

The CLASSPATH XE "CLASSPATH" environment variable is used to establish the search path
 Java uses to find class libraries. The Java community is largely migrating away from use of the CLASSPATH environment variable because it is problematic and it is now considered to be an outdated technique. The COE, including the kernel, does not establish nor manage the CLASSPATH setting. Consequently, segment developers cannot assume that it has any specific setting inherited from loading the COE kernel or any other COE segment. Segment developers are responsible for establishing any CLASSPATH settings that their segments may need. However, this must be done in such a way that the setting is local to the current JVM invocation only. Segments are not permitted
 to create a global CLASSPATH environment variable setting that is subsequently inherited by other segments outside the scope of the current JVM invocation. This can be achieved, for example, by placing a wrapper around an invocation of the JVM executable that temporarily establishes the CLASSPATH setting while the JVM is running.

The preferred technique is to establish the class search path at runtime. The Java tools allow specification of a class search path via a runtime flag (typically ‑classpath or ‑cp). This runtime flag completely overrides the CLASSPATH environment variable setting.

For example, using Windows NT,

java -cp c:\temp;c:\MyDir\MySegs; MyApp

executes the application MyApp from the current working directory and searches, in order, the system class libraries directory, c:\temp, and c:\MyDir\MySegs for any required class libraries. Note that when the -cp flag is used, the CLASSPATH environment variable is completely ignored.

The -cp runtime flag is also used to specify jar files. Jar files were invented as a means for encapsulating all the non-system class libraries in an application into a single file that could then be downloaded during a single HTTP connection to a client platform rather than a separate HTTP transfer for each class file in the application. Jar files are created with the Java jar program and may be compressed, which reduces the size of a file to be downloaded, or uncompressed, which reduces the time required to load the class files within a jar file.

Some examples will illustrate how jar files and class files are located.

java -cp c:\temp;c:\MySeg\bin\MyJar.jar; MyApp

will execute the application MyApp from the current working directory. Required class files will be searched first in the directory c:\temp and then in the jar file MyJar.jar found in the directory c:\MySeg\bin.

java -cp MyJar.jar; MyApp

will execute the application MyApp from the current working directory. Required class files will be searched for in the jar file MyJar.jar, which must be in the current working directory. The CLASSPATH environment variable is totally ignored. In this example, required class files that are not contained in MyJar.jar must be in the current working directory
.

9.6 Java Naming Requirements

As Java usage XE "Java classes" becomes more prevalent within the DII COE, there is the potential for multiple Java classes to have conflicting names. Such conflicts could be avoided by using the segment prefix to name classes, but this solution does not fit well within standard Java development practices. Instead, the COE utilizes the fact that Java deconflicts classes based upon the package name.

The following requirements are stated for Java-based segments:

· Class package names shall be all lower case and in the form reverse_domain.SegDir where reverse_domain is the sponsoring organization’s network domain in reverse order and SegDir is the segment’s assigned directory. mil.disa shall be used as the “reverse domain” for DISA COE segments. For example, the JMV software is denoted as mil.disa.jmv.*.

· Services/agencies may choose to include the project name in the “reverse domain” portion of the package name, but are not required to do so. As an example, for the Navy GCCS-M system, mil.navy.spawar.gccs-m, mil.navy.spawar, and mil.navy.spawar.gccs‑m are all acceptable for the “reverse domain.”

· Company names within package names, interface names, and method names are strictly forbidden.

· Class method names shall follow Java mixed case conventions, but use of the segment prefix to name methods within a class is purely optional.

· Interface names shall be prefaced with the capital letter “I” and shall use a mixed case segment abbreviation after the initial “I.” The mixed case segment abbreviation shall be based on the segment name and not the subpackage. For example, IJmv would be an appropriate interface name for the JMV segment within the package mil.disa.jmv.

· In Java, source code filenames and class filenames are the same as the package or class that they implement with an extension of .java or .class respectively. Jar files are also typically given the same name as the class or package that they implement with a .jar extension. However, Java does not enforce this convention so that jar files can actually have any arbitrary file name. DII COE compliance requires that jar files have a .jar extension, or .zip for developers who are using JDK-1.1 or earlier Java releases.

· Jar files stored outside the segment (see subsection 9.7 below) shall use the segment prefix to ensure that the segment’s jar filenames do not conflict with other segment developers.

9.7 Storing Class and Jar Files

Executable code within a segment is stored in the segment’s bin subdirectory while libraries used in development are stored in the lib subdirectory. In the context of Java, class files and jar files play the role of both libraries and executables. There is presently no industry accepted standard for where to place jar and class files. Therefore, because they are executables, class and jar files used only by the “owning” segment shall be stored in the segment’s bin subdirectory.

Class and jar files intended to be shared by other segments shall be stored in a COE-provided shared directory, COE/classfiles. This subdirectory is provided to facilitate sharing and to reduce search path issues for segments that wish to share class and jar files on the same local machine. The COE does not require that developers use the common location except when the class and jar files are to be shared with other segments.

The following requirements apply to this shared storage location:

· Developers may store both class and jar files in this shared location. Developers should carefully consider the impact to other developers in choosing whether to package their Java files as jar files or class files. Packaging as jar files reduces space and encapsulates a segment’s class files. However, developers who use the jar files must explicitly know the jar filename and must explicitly state
 the jar filename and path in the -cp flag. Packaging as individual class files means that other developers do not need to know the filename explicitly; only their location. However, packaging as class files means that there are more files to manage (1 per class) and the files are not compressed.

· As interim
 guidance, developers shall use the PostInstall descriptor to move class/jar files to this shared location at installation time and shall use the DEINSTALL descriptor to remove them when the segment is de-installed.

Class files stored in the shared location may include packages. Java requires that the packages follow a specific directory structure. Developers shall follow the guidance in subsection 9.6 for naming packages, and hence the implied directory structure, for all packages stored in the shared location.

· Developers shall use the naming conventions stated in subsection 9.6 for naming jar files stored in the shared location.

· Class and jar files shall have the same group as their “owning” segment and the same file permissions as would be stated for executables.

9.8 Miscellaneous

This subsection states several miscellaneous requirements for the use of Java within a COE segment.

· Developers shall not replace the COE-provided Java runtime tools and class libraries since other segments may have dependencies upon them.

· Developers should not include a JRE with their segment since the COE already provides a JRE. However, this is not always feasible due to the rapid rate at which JVMs and JREs are created as the Java standards evolve. Chief Engineer approval is required if a developer needs to include with their segment a different version of the JRE than what is provided by the COE.

· Segments that need a modified version of the standard Java class libraries shall encapsulate the modified libraries in their own segment.

· Methods, variables, and classes shall not be exposed at any higher level than is required by the application. For example, methods that are not to be accessible outside the class shall be declared private. Classes that are not to be extended shall be declared final.

· Segments shall not change system properties since these are global to the current JVM instance. Such changes may adversely affect other Java applications running in the same JVM instance.

10. ANNEX C: Java Coding Convention

10.1 Naming Conventions

10.1.1 General guidance

Names shall be full English words. Use words applicable to the functional domain. Where more than one word is required, word boundaries are broken by capitalizing the first letter of each word. Use of common acronyms is acceptable, but they must follow the naming conventions as if they were words. Examples: thisAtscObject, not thisATSCObject: ssnObject, not SSNObject. Exceptions to the full English words policy are as follows.

· You may use single letter identifiers in loop control structures.

· You may use the letter 'e' for exceptions.

· A list of valid abbreviations might be provided at a later time. There are several cases where an abbreviation might be acceptable, but a valid list shall be maintained to avoid adhoc creation of abbreviations.

10.1.2 Specific Guidance (per Java Construct):

The following is taken from Scott Ambler's paper Writing Robust Java Code.

· Class - Letters of each word capitalized. General guidance applies. Examples: CollectiveTask, TerminalLearningObjective, UnitMetl (note that METL is an acronym).

· Interface - Same conventions as class with the following exceptions. Interface names shall be preceded by a capital 'I'. This is the convention supported by COM not Java, but makes interfaces more readily apparent. A Java supported convention is to append 'able', 'ible', or 'er' to the interface name. This is acceptable, but not required. Examples: IObservable, ITaskable, IVideo.

· Constructor - Must use the same name as the class. Enforced by the Java compiler.

· Destructor - Java has no concept of a destructor. Shall call the finalize() method prior to garbage collection.

· Exceptions - Use the letter e or provide full English names as per general guidance.

· Fields and Properties - First letter lowercase. First letter of any non initial word uppercase. Examples: myTask, firstName, lastName, ssnObject, mySsn. Note that the convention is applied to SSN as if it were a word.

· Arguments, Parameters, and Local Variables - Same as fields with the following allowable exception. You may preface the name with 'a', 'an', or 'some'. This technique shall be considered an appropriate alternative to name hiding (naming local variables the same as a variable of greater scope). Examples: aFirstName, anSsn, someTasks, firstTask.

· Components and Widgets - Same as fields with the following change. Concatenate the type of widget to the end of the name. Examples: okButton, taskListBox, editMenu. IDE tools provide poor names (Button1, ListBox2, etc?) for widgets. Rename those widgets to conform to this standard.

· Final Static Fields (Constants) - Use all uppercase words separated by underscore. Examples: MAXIMUM_NUMBER_OF_TASKS, DEFAULT_SSN, OFFICIAL_METL.

· Loop Counters - Use of single letters is acceptable. Otherwise, they shall be named as per Local Variable guidance.

· Member Functions - Also known as methods or object messages (for non-static functions). General guidance applies. First word shall be an active verb whenever possible with the first letter in lower case. Examples: openFile, addTask, constructCourse.

· Accessors - Also known as getters and setters. These are a requirement for using JavaBeans. Every private field that needs accessibility from outside the immediate class shall have getter and setter methods.

· Getter Methods - Preface the name of the member function with the word 'get'. The rest of the member function name is the name of the private field name with the first letter of each word capitalized.

Examples
:

public Object getFirstName()

public Object getSsn()

· Boolean Getter Methods - An exception to the getter method convention is when the private field type is boolean. Preface the name of the member function with the word 'is' instead of 'get'.

Examples
:

public boolean isValid()

public boolean isLocal()

public boolean isAuthorized()

· Setter Methods - Preface the name of the member function with the word 'set'. The rest of the member function name is the name of the private field name with the first letter of each word capitalized
.

Examples:

public void setFirstName(Object aFirstName)

public void setSsn(Object anSsn)

· Package Names - Java conventions indicate that reversing the internet domain is a good mechanism for package naming. This can be taken to an extreme, but does offer a good start.

mil.army.atsc shall be used as the standard prefix for all Java packages developed for the system. The AIS/Configurations with development responsibility shall be named according to the following taxonomy. Further subdivision of the package structure shall be left to the developmental/design leads at this time.

· mil.army.atsc.ccs.<packageName>

· mil.army.atsc.utmc.<packageName>

· mil.army.atsc.itc.<packageName>

· mil.army.atsc.adlsc.<packageName>

· mil.army.atsc.dldr.<packageName>

· mil.army.atsc.tdc.<packageName>

· mil.army.atsc.trmc.<packageName>

· mil.army.atsc.lmc.<packageName>

10.2 Documentation

10.2.1 General Guidance:

There are three types of Java comments. Each has multiple uses. For our conventions, we shall restrict how and when each style of comment shall be applied.

Dates in comments shall use dd/mm/yyyy format.

10.2.1.1 JavaDoc Comments

These comments are used to document classes, interfaces, member functions, and fields. Their purpose is to document the external interfaces of you class.

EXAMPLE:

/**

 * Customer - A customer is any person or

 * organization that we sell goods or

 * services to.

 *

 * @author S.W. Ambler

 */

10.2.1.2 C Style Comments

Use C style comments (/*?*/) to document out code. When documenting out code, the following conventions apply.

Use a forward slash '/' followed by no fewer than 15 asterisks '*' on the first line of the code to be commented out. This creates an obvious break in the code. Commented out code requires that each commented line contain one asterisk '*' to align with the asterisk from the first commented out line (see example 1). Indentation shall align with the current indentation level of the "live" code if at all possible.

The second line of the commented out code must contain the name of the person who commented out the code, the date it was commented out, and a description of why it should remain in the production source. Production source will not usually carry commented out code, but with good justification this provides a way.

The last line of the commented out code contains no fewer than 15 asterisks '*' followed by a forward slash '/'.

EXAMPLE 2:

/***************

 * Code commented out by John Smith on 8/15/2000.

 * It should remain in the code pending review of

 * the current algorithm. Remove it if the current

 * algorithm is satisfactory.

 *

 * for(int i=0;i<20;i++)

 * {

 * myObject.doSomething(i);

 * }

 ***************/

10.2.1.3 Single Line Comments

Use single line comments for all inline commenting of control structures, difficult code, and business logic. Comments shall be aligned with and before the code they are commenting on, whenever possible. See section 2.2.5 for more guidance on code comments.

EXAMPLE :

//Process for each parameter.

for(i=1; i<number_of_args; i++)

{

//Keyword ALL is a special case - currently do not //allow other parameters after keyword

if(stricmp(arg[i], "all") == 0)

{

strcat(cmd_line, " ");

.

.

.

}

10.2.2 Minimum Documentation Requirements:

The top of each source file contains a header containing the file name, a brief description of the file, any necessary notes, a list of related files, automated version control information, a creation history, and any applicable licensing information.

EXAMPLE:

/*

** Copyright (c) 1995 Science Applications International Corporation

*/

/**/

/*poll.cpp

**

**.NAME 1,poll.cpp- Main scheduling file.

**

**.DESCRIPTION

** This is the primary file needed for compilation of the scheduling

** module.

**

**.NOTES

** None.

**

**.FILES

** None.

**

**.VERSION_CONTROL_INFORMATION

**

** $Revision: 1.8 $

** $Log: P:\tst\source\poller\poll.cpv $

**

** Rev 1.8 22 Feb 1995 09:40:44 SMITHJ

** DT6060c Fixed update queue problem and added remove_ini_file function to

** advrun.ini file from the local ram drive when a system is shutdown.

**

.

**

.

**

.

**

** Rev 1.5 21 Jan 1995 16:54:42 SMITHJ

** DT6060c First pass at adding error handling. Eliminated some duplication

** functionality.

**

**

**.HISTORY

**

** Created Jan 10, 1995 Joe Smith

**

***/

Classes and interfaces are required to have a document style heading immediately preceding the definition. This heading shall contain the following:

· The purpose of the class - This includes a general description, and any warnings that programmers should be aware of when using.

· Design Patterns Implemented - Document any design patterns used or implemented by this class. These could be interfaces, adapters, or conventions.

· Known problems - Document any known bugs or problems with the use of the class.

· Maintenance History - Provide a revision history. This should be maintained and enforced by your version control software. Having it here is duplication, but can be useful when source code moves outside the confines of source control.

· Document invariants - What preconditions must be satisfied prior to use of this class. It is possible that some events must occur prior to the use of a class. Document any such requirements here.

· Concurrency strategy - Document anything pertaining to the use of this class in a threaded environment.

EXAMPLE:

/*

**

**.NAME

** compareAndProcessSegment,

**

**.SYNOPSIS

** void compareAndProcessSegment(String segName, String segFileName)

**

**.PARAMETERS

** @param segmentHomeDir the path to the possible collaboration segment

** @param segNameFile the file descriptor of the segments SegName file.

**

**.DESCRIPTION

** The compareAndProcessSegment method determines if the detected

** segment

** is a Collaboration Tool. If it is then it gets the command line string

** for the Collaboration Tool and writes all necessary information to the

** tools file.

**

**.CALLS

** None.

**

**.CALLED BY

** updateLocalToolFile();

**

**.RETURNS

** None

**

**.HISTORY

** 03/23/99 John Smith - Created

**

*/

public void compareAndProcessSegment(String segName, String segFileName)

 {

A document block is not required to exist if it doesn't apply to the class. For example, if there are no known problems, then do not include a known problems block in the documentation. Review of the code shall take into account the assumptions a programmer might make based on the documentation or lack of documentation.

Member functions shall have a header document comment immediately preceding the function definition. The header shall contain the following information:

· Purpose of the method. A concise description of what a function and why. Try and clarify intent whenever possible.

· List the parameters. Use the javadoc @param tag. Be sure and include an explanation for each parameter. The user of your class should not be confused as to what your function is expecting.

· Describe the returned value. Use the javadoc @return tag. The users of your class should know exactly what they are receiving.

· List all exceptions thrown. Use the javadoc @exception tag. An explanation of each exception and conditions under which it would be thrown is required. Also, the documentation shall reflect any changes to the object or system's state that a caller needs to know. The users should not be confused about the severity or the expected course of action after reading this document header.

· Describe your visibility decisions. This should exist if there may be some doubt about your choice to make something public, protected, private or default. Clarify your choice only when there may be some doubts.

· Describe the changes made to the object. Functions shall modify state and data for the object. State clearly what will be changed as a result of this function.

· Describe preconditions and postconditions. Specify what assumptions are made by the function at the start of execution. Also, specify exactly what the caller can expect as a result if the assumptions were valid. This can usually be handled with the parameters and return value, but there are times when convoluted dependencies exist. Document those.

· Known Bugs. Usually, the source code control tool will handle this. Add it when source code may move around or code control is not robust.

· Include a history of changes. Usually, the source code control tool will handle this. Add it when source code may move around or code control is not robust.

· All concurrency issues. If the function requires synchronized access to some data, document the requirements. There should be no doubt as to the safeness of the function when using threads.

· Provide an example of function use. Include this when it is appropriate to demonstrate use of a function in a context.

EXAMPLE:

/*

**

**.NAME

** compareAndProcessSegment,

**

**.SYNOPSIS

** void compareAndProcessSegment(String segName, String segFileName)

**

**.PARAMETERS

** @param segmentHomeDir the path to the possible collaboration segment

** @param segNameFile the file descriptor of the segments SegName file.

**

**.DESCRIPTION

** The compareAndProcessSegment method determines if the detected

** segment

** is a Collaboration Tool. If it is then it gets the command line string

** for the Collaboration Tool and writes all necessary information to the

** tools file.

**

**.CALLS

** None.

**

**.CALLED BY

** updateLocalToolFile();

**

**.RETURNS

** None

**

**.HISTORY

** 03/23/99 John Smith - Created

**

*/

public void compareAndProcessSegment(String segName, String segFileName)

 {

Code comments shall be single line comments (‘//’) and shall document control structures and complex code. Let the code speak for itself in most cases. It is the responsibility of the coder to insure that the code is understandable. Only add comments to resolve questions of intent, placement, or timing (why, where, or when). What and how are defined by the code itself.

In many cases, code comments will be a by-product of the review process. A reviewer might not understand code that is obvious to the original developer. Once the reviewer is comfortable with his/her understanding, code comments might be recommended to remove future questions.

10.3 Style

10.3.1 General Guidance

The goal is to make source similar in construction and style. A new developer knowledgeable with this coding convention will more quickly read and understand the content of source code that follows this guidance. There should be no question about where something is or what it should look like.

10.3.2 Definitions

A unit is 1 space. The term unit represents indentation only. Scott Ambler refers to a unit as 1 TAB, but the TAB key means different things in different editors. While it may create good looking indentation in one editor, it will look terrible in another editor with a different definition of what a TAB looks like.

A block is the code that is contained within curly braces ‘{}’. Most Java control structures use blocks to determine what code belongs to the specific structure in question. The open brace ‘{‘ shall appear on the next line after the control structure defining the block; indent the open brace 1 unit. The closing brace ‘}’ shall align with the opening brace, so as to clearly define the scope of the block. See the specific control structures for more detailed instruction.

EXAMPLE:

if(someBooleanValue)

 {

// statement for true goes here

 }

else

 {

// statement for false goes here.

 }

A statement is a legal Java statement terminated with a ‘;’. A line is one physical line in the text file. No line shall exceed 80 characters in width. A statement can consist of multiple lines of source.

10.3.3 Indentation Guidance

Unless explicitly stated otherwise, indentation for the first line of any statement in a block shall be indented 1 unit from the starting column of the enclosing block.

EXAMPLE:

if(someBooleanValue)

 {

// statement for true goes here

 }

else

 {

 // statement for false goes here.

 }

If a statement spans more than one line of text, the line(s) after the first shall be indented one unit from the starting column of the first line. Use common sense when breaking up these statements.

EXAMPLE:

if((someBooleanValue == someOtherBooleanValue) &&

(anotherBoolean == aFinalBoolean))

{

// some stuff for the true path.

}

Finally, when the nesting becomes so deep that you are pressed to keep the code within 80 columns, you have the responsibility to make qualitative judgments about the readability of your code. Your decisions are, of course, subject to review.

10.3.4 Use of import

Programmers shall use import statements that import entire packages, rather than specific classes.

EXAMPLE:

import java.io.*;

10.3.5 Java Source File– Style and Structure

The Java source file is required to have the same name, case sensitive, as the public class in the file. The structure is as follows:

· Source header documentation for the file.

· Package name specifier

· Any import clauses.

· The specification for the public class.

· Any package visible classes contained in the file. These shall be in alphabetical order.

All of these constructs shall appear starting on column 1.

10.3.6 Class – Style and Structure

With the exception of nested classes, all classes start at column 1. The methods and fields that make up the class are presented in order of visibility – most visible first. The order is alphabetic when visibility is the same. For example, all public member functions shall be found in the same area within the class and they shall be in alphabetical order.

The specific order is as follows:

· Class documentation (defined in section 2.2.2)

· Class definition

· public fields (should only have static and static final fields in this section).

· Constructors

· finalize()

· public member functions

· protected member functions

· private member functions

· protected fields

· private fields (all instantiated fields should be here)

· nested or inner classes

Notice that public field definitions are found at the top of the source code. The only public fields that should exist are constants and globals. These should be rare, but when they exist should be at the top of the source. Notice also that protected and private fields are found at the bottom of the source code for a class. They are located at the bottom simply because users of your class should be looking at the public interface, not the fields.

Nested or inner classes are the only structure indented 1 unit from the first column of the enclosing class. This distinguishes it from any other kind of class, and makes it easier for a reader of the class. If you choose the shorthand representation of an inner class, this does not apply.

10.3.7 Member Functions – Style and Structure

Indentation for the header and the function declaration shall be at the same column as the enclosing class. All enclosing local variable definitions and statements shall be indented 1 unit from the first column of the header and declaration.

10.3.8 Java Control Structures – Style and Structure

In general, control structures follow regular indentation guidance. The statements within the braces of a control structure shall be indented 1 unit like any other block. No specific documentation is required, but for complex structures a single line comment on the terminating brace shall indicate to which control structure the brace relates.

10.3.9 Fields

The documentation header and the specification statement shall start at the same column as the enclosing class.
This is true regardless of visibility.
10.4 References:

 Each of these resources deserves a thorough read on the part of the design teams and the programming staff. The guidance provided applies to code generated for the project. Code generated by third parties is not subject to these conventions and no effort shall be made to convert them.The following guidelines are almost exclusively derived from the following sources:

AmbySoft Inc. Coding Standards for Java. http://www.ambysoft.com/javaCodingStandards.html
Code Conventions for the Java Programming Language. http://java.sun.com/docs/codeconv/
JavaDoc Tool Home Page.http://java.sun.com/products/jdk/javadoc/index.html

How to Write Comments for JavaDoc. http://java.sun.com/products/jdk/javadoc/writingdoccomments/index.html

javadoc-The Java API document generator. http://java.sun.com/j2se/1.3/docs/tooldocs/win32/javadoc.html
10.5 Design Patterns
The ATIA-M Resource Center (or ARC) is a collection of design patterns and code templates that are recommended for use on the ATIA-M project. The intent of the collection is to provide a common approach to building software for the ATIA-M framework.

10.5.1 J2EE Design Patterns

The J2EE Design Patterns have been collected from other resources on the web. Some of these resources require registration. Many of the patterns are found in the J2EE Patterns Catalog on the http://java.sun.com web site. When you access the patterns page, you may be asked to register/log-in to the site. All of the sites that we use as resources provide free registration. For an online discussion forum on most of these patterns go to either the J2EE Design Patterns or J2EE BluePrints forums. Each pattern is presented as a hyperlink to the external resource. Some patterns may include the location of example code, already in ATIA-M, where the pattern has been successfully used. Additional helpful information may also be provided.

10.5.2 Code Templates

The ARC provides a series of directories which contain template Java classes for common constructs used in the building of the system. These templates constitute what we consider to be a complete implementation of each construct. Each template includes a usage document which provides instruction on how to use the template. The templates are also documents with significant internal comments to facilitate development.

10.5.3 Note On Coding Conventions

The headers on these template files are an adaptation of the guidance in the draft Java Coding Standards document. The headers were adapted from the proposed standard in the following ways.

· Information that would be placed in a header section, such as a description of the Java class, has been moved to the locations specified by JavaDoc. This will produce better documentation. Use of the original header format would have resulted in the information being unavailable in JavaDoc.

· The original header had a VERSION CONTROL INFORMATION section. This section has been omitted because the information is available from ClearCase.

10.5.4 General template usage guidelines:

1. Copy the template source files into the directory structure for the source code.

2. Rename each template file using the proper naming conventions

3. Open each template file and change any internal text marked with a //SETUP comment. Examples include:

· Update the header information in the source code file

· Change name of Java class to match filename

· Correct Package names

· Correct Import clauses

4. Complete the implementation of the functionality using the following guidance:

· Things that must be done are highlighted with //TO DO comments

· Other guidance is included in the template as Java comments

11. ANNEX D: Army Learning Object (ALO) Specification Version 3.1

11.1 PURPOSE

The purpose of this document is to set forth guidelines that are intended to result in consistent formatting of the ARMY LEARNING OBJECT (ALO) xml files submitted by course developers to the DL/DR Repository. It is assumed that the users of this document are familiar with xml/dtd structuring and syntax.
This document, in conjunction with the Master ALO DTD, serves as a Help manual to facilitate the creation of ALO based xml documents. Documents should be identified by a unique file id. EXAMLE: ALO-QM2319.xml

11.2 DTD

The name of the current master ALO dtd file is "master_LOM_31.dtd". This file is found at http://www.atimp.army.mil/atxxi/tss.asp .

To use to validate the xml document, specify the following at the beginning of your ALO xml file.

<!DOCTYPE army_learning_objects PUBLIC "-//ARMY ATSC(ATIMP)//DTD ARMY LEARNING OBJECT (ALO)//EN" http://www.atimp.army.mil/dtd/master_LOM_31.dtd">

11.3 XML

The master ALO template document is at http://www.atimp.army.mil/atxxi/tss.asp called master_LOM_31.xml. This document represents a complete course metadata and content for one instance ALO data based on the above DTD. To complete a given course, the “phase”, “module”, “lesson”, “learning_objective”, “learning_step_activity”, etc. tag sets may be repeated for each applicable set in your course. The same may apply to any other dtd elements which are indicated as repetitive (* or +). Elements indicated with (* or ?) are optional and may not be included if not applicable to your xml document.

11.3.1 Style Sheet (XSL)

There is a current master ALO style sheet (xsl) template at http://www.atimp.army.mil/atxxi/tss.asp called master_LOM_31.xsl. This style sheet can be used to dump out ALO xml document data in a formatted browser display. To use this, place the following entry at the beginning of the xml document prior to the <army_learning_object> tag.

EXAMPLE:

<!DOCTYPE army_learning_objects PUBLIC "-//ARMY ATSC(ATIMP)//DTD ARMY LEARNING OBJECT (ALO)//EN" http://www.atimp.army.mil/dtd/master_LOM_31.dtd">

<?xml-stylesheet href="master_LOM_31.xsl" type="text/xsl"?>

<army_learning_objects>

…

rest of document entries

…

11.4 DOCUMENT TREE ELEMENTS

(Use BACK button to return to the Tree after linking.)

Note1: Items shown as DEPRECATED are no longer in used after date shown.

Note2: All attributes of Type ID must have a value which is a valid XML name; that is, it must begin with and alpha character and may contain alpha-numeric characters and the underscore (_) with no imbedded white space (blanks).

army_learning_object
 identification (new with version 2.0)

submitter

media (?)

media_item (+)

media_name

media_desc (?)

access_name

narrative (?)

 test_item_pool (?)

test_item (+)

media_ref (*) (See Above)

scenario_desc

text (*)

media_ref (*) (See Above)

set_scenario

text (*)

media_ref (*) (See Above)

stem

text (*)

media_ref (*) (See Above)

essay_test_item (*)

essay_response

fillin_blank_test_item (*)

fillin_blank_item_response (?)

fillin_blank_set (+)

fillin_blank_answer

fillin_blank_response (?)

multiple_choice_test_item (*)

distracter

multiple_choice_answer_id

multiple_choice_answer

text (*)

media_ref (*)

multiple_choice_response

true_false_test_item (*)

true_false_answer

true_false_response

match_test_item (*)

match_set

match_set_ord_id

match_set_ord_text

text (*)

media_ref (*)

match_set_subord_id

match_set_subord_text

text (*)

media_ref (*)

match_set_response

exams (?)

examination (+)

basic_desc

general_scenario

text (*)

media_ref (*)

point_weight_qty (*)

media_ref (*)

test_item_ref
(*)

course (?)

common_info
 (formerly instructional_unit)

title (formerly name)

length (?) (formerly course_length)

status_effective_date (?)

credit_qty (?)

est_duration_qty (deprecated, 06/01)

retake_qty (?)

 magement_category_remark (?)

component (+)

description (?)

media_ref (*)

occupation (*)

 condition_text (deprecated, 04/01)

occupation_name (deprecated, 06/01)

 media_ref (?)

 exam_ref (*)

 plan_course_summary (*) (deprecated, 04/01)

course_length

“

 instructor_ich

“

max_class_size

“

min_class_size

“

est_ach

“

phase (*)

common_info (see above format under course)

module (+)

common_info (see above format under course)

lesson (+)

common_info (see above format under course)

lesson_plan (*)

(deprecated, 04/01)

document

 “

doc_name

 “

published_date
 “

doc_segment (*)
 “

detail_name
 “

detail_content ”

facility_type (*)

(deprecated, 04/01)

category_code

“

facility_type_name

“

learning_objective (+)

learning_objective_component (+)

description

total_learning_steps (deprecated, 04/01)

media_ref (?)

exam_ref (*)

learning_step_activity (*)

step_name

reference (*)

document (see above)

task (*)

task_name (?)

task_step (*)

media_ref (*)

instruction_duration (?)

instruction_content (+)

content_text (?)

instruction_note (*)

note_desc (deprecated, 04/01)

note_text

media_ref (*)

instructor_qty (*) (deprecated, 04/01)

materiel_item (*) (deprecated, 04/01)

item_qty

item_mileage_usage_qty

item_hour_usage_qty

item_remarks

position (*) (deprecated, 04/01)

posn_name

posn_desc

practical_exercise (deprecated, 06/01)

document

“

exam_ref (*)

test_item_ref
(*)

[Back to TOP]

11.5 ELEMENT DEFINITONS

11.5.1.1
army_learning_object

Description:

The root tag enclosing a complete LOM document. Should contain one complete course or module (sub-course) where there is no parent course. Optionally, may have one or more phase entries with associated modules for a ‘Phased’ course.

Attributes:

None

Type:

Parent, PCDATA.

See Also:

course, phase, module, lesson

identification

Description:

This is a parent tag to encapsulate the ALO document identification data for each

submission.

Attributes:

version, date

Type:

Parent, PCDATA

See Also:

submitter

submitter

Description:

The name of the person submitting and the contractor or unit identification or name. EXAMPLE: <submitter>J. Jones, XYZ Corp.</submitter>

Attributes:

None

Type:

CHILD, PCDATA

See Also:

identification
11.5.1.2
course

Description:

This is a parent tag containing all the metadata and content for a course. Course and Phase elements may be left out where a sub-course (module) is being defined without an existing parent course. If a course is broken into multiple Phases, then the module tags will be defined as subordinate to the applicable phase.

Attributes:

itro_code, course_type, contract_code

Type:

Parent, PCDATA.

See Also:

common_info, plan_course_summary, phase, module
11.5.1.3 common_info

Description:

Defines meta-tags which are common to course, module and lesson definitions. Here is where the applicable user id’s and names are tagged and the Component definitions are written.

Attributes:

number_id, assoc_reason, version, type_code, status_code, security_class_code, credit_type, mob_code, target_num_id, , management_category, examination_reason,

Type:

Child/Parent, PCDATA.

See Also:

title, component, status_effective_date, credit_qty, est_duration_qty, retake_qty

11.5.1.4 title

Description:

A user supplied name for this Instructional Unit/version (course, module or lesson).

Attributes:

None.

Type:

Child, PCDATA.

See Also:

11.5.1.5 status_effective_date

Description:

The date the current status_code is effective for the applicable Instructional Unit.

Attributes:

None.

Type:

Child, PCDATA. (Use Date Format, YYYY-MM-DD)

See Also:

11.5.1.6 credit_qty

Description:

The credit in hours and tenths which may be given for this Instructional Unit. May be optional for lessons.

Attributes:

None.

Type:

Child, PCDATA.

See Also:

11.5.1.7 est_duration_qty

Description:

Estimated duration in hours which this Instructional Unit should require to complete. May be displayed in weeks/days or hours to the end user.

Attributes:

None.

Type:

Child, PCDATA.

See Also:

11.5.1.8 retake_qty

Description:

The estimated time in days between retakes for this Instructional_unit.

Attributes:

None.

Type:

Child, PCDATA.

See Also:

11.5.1.9 component

Description:

Defines the various textual information about an Instructional Unit. Component type_code attribute defines the specific text required (i.e., Scope, Purpose, etc.) Component elements may be repeated as many times as necessary to declare all component data.

Attributes:

type_code
Type:

Child/Parent, PCDATA.

Example:

<component type_code=”PURPOSE”>

<description>Text to define the Instructional Unit Purpose </description>

</component>

See Also:

description
11.5.1.10 description

Description:

The textual content for an Instructional Unit Component type.

Attributes:

None.

Type:

Child, PCDATA.

See Also:

11.5.1.11 plan_course_summary

Description:

Planned Course Summary is a comprehensive estimation of all factors related to a specific course of instruction.

Attributes:

plan_id

Type:

Parent, PCDATA.

See Also:

course, course_length, instructor_ich, max_class_size, min_class_size, est_ach

11.5.1.12 length

Description:

Defines the length of this course/module/lesson in hours.

Attributes:

None.

Type:

Child, PCDATA.

See Also:

11.5.1.13 instructor_ich

Description:

Value for Instructor Contact Hours, for classroom instruction.

Attributes:

None.

Type:

Child, PCDATA.

See Also:

11.5.1.14 max_class_size

Description:

Maximum allowed value for attendance in a classroom for this course.

Attributes:

None.

Type:

Child, PCDATA.

See Also:

11.5.1.15 min_class_size

Description:

Minimum allowed value for attendance in a classroom for this course.

Attributes:

None.

Type:

Child, PCDATA.

See Also:

11.5.1.16 est_ach

Description:

Value for estimated Academic Contact Hours applicable to a given instructor lead course.

Attributes:

None.

Type:

Child, PCDATA.

See Also:

11.5.1.17
phase

Description:

Allows the grouping of one or more modules as a means to conduct training at different locations or delivery methods. This tag is optional and need not be used if the course is not phased.

Attributes:

None.

Type:

Parent, PCDATA

See Also:

course, module, common_info

11.5.1.18 module

Description:

Defines the elements of a sub-course/module for a given course. A grouping of associated lessons for a course or phase (if a phased course) which are normally taught as a unit. May be defined without a parent course. (see Course), above.

Attributes:

strategy_code, delivery_code, delivery_group
Type:

Parent, PCDATA.

See Also:

course, common_info, management_category_remark, lesson, phase
11.5.1.19 management_category_remark

Description:

Minimum allowed value for attendance in a classroom for this course.

Attributes:

None.

Type:

Child, PCDATA.

See Also:

11.5.1.20 lesson

Description:

Defines elements for the basic building block of training. The level at which training is designed in detail. The lesson is structured to contain the learning objectives with their associated learning steps. Normally, one Terminal Learning Objective is applied to a lesson with the addition of zero or more supporting Enabling Learning objectives.

Attributes:

assigned_risk

Type:

Child, PCDATA.

See Also:

module, common_info, learning_objective, lesson_plan, occupation, facility_type

11.5.1.21 lesson_plan (deprecated, 04/01)

Description:

Defines the document elements to specify a lesson outline. Primarily used for classroom instruction.

Attributes:

None.

Type:

Child, PCDATA.

See Also:

document

11.5.1.22 document

Description:

Defines elements of various training documents and associated parts (segments).

Attributes:

doc_id, doc_category, doc_type
Type:

Parent, PCDATA.

See Also:

lesson_plan, reference_document, published_date, document_segment

11.5.1.23 doc_name

Description:

The name of the given document.

Attributes:

None

Type:

Child, PCDATA.

See Also:

11.5.1.24 published_date

Description:

The date when this document was published.

Attributes:

None

Type:

Child, PCDATA. (Us Date Format, YYYY-MM-DD)

See Also:

11.5.1.25 document_segment

Description:

Defines elements for the definition of a document part. These tags may appear as often as necessary to define all applicable parts of a document.

Attributes:

detail_id
Type:

Child/parent, PCDATA.

See Also:

document, detail_name, detail_content

11.5.1.26 detail_name

Description:

Name of the specific document detail element. Example, INTRODUCTION. These element values are user defined and are applicable to the specific document being tagged.

Attributes:

None

Type:

Child, PCDATA.

See Also:

11.5.1.27 detail_content

Description:

Textual content of a document_segment, applicable to the specific document detail_name.

Attributes:

None

Type:

Child, PCDATA.

See Also:

11.5.1.28 occupation

Description:

Defines metadata elements to associate an Army Occupation Specialty with a given course, module or and/or lesson.

Attributes:

occupation_id, occupation_reason, occupation_type, career_management_field, officer_career_field
Type:

Parent, PCDATA.

See Also:

lesson, occupation_name, condition_text

11.5.1.29 occupation_name (Deprecated, 06/01)

Description:

The name for this occupation specialty.

Attributes:

None

Type:

Child, PCDATA.

See Also:

11.5.1.30 condition_text (deprecated, 04/01)

Description:

The text that describes the circumstances in which a specific OCCUPATION is used.

Attributes:

None

Type:

Child, PCDATA.

See Also:

11.5.1.31 facility_type (deprecated, 04/01)

Description:

The elements to associate required facilities with the teaching of the specified lesson.

Attributes:

reason_code
Type:

Parent, PCDATA.

See Also:

lesson, category_code, facility_type_name

11.5.1.32 category_code

Description:

The code that denotes the class of a specific FACILITY-TYPE. Ex: Airfield, Waterpoint, Radar Site

Attributes:

None

Type:

Child, PCDATA.

See Also:

11.5.1.33 facility_type_name

Description:

The name for this facility type.

Attributes:

None

Type:

Child, PCDATA.

See Also:

11.5.1.34 learning_objective

Description:

The elements to define a learning objective for a given lesson. Learning objectives may be of two types; Terminal(TLO) or Enabling(ELO). Normally there is one TLO for a give lesson which may be supported by zero or many ELO’s. Learning Objectives must contain at least one Learning Step/Activity (exception; if there are supporting ELO’s the parent TLO may not have separate steps).

Attributes:

seq_id, type_code, assoc_reason, target_id, target_lsn_id
Type:

Child/Parent, PCDATA.

See Also:

lesson, learning_objective_component, total_learning_steps, learning_step_activity

11.5.1.35 learning_objective_component

Description:

Defines the descriptive text of the Action, Conditions and Standards of the applicable learning objective.

Attributes:

type_code
Type:

Child/Parent, PCDATA.

See Also:

learning_objective, description

11.5.1.36 description

Description:

The descriptive text for a given learning objective Action, Condition or Standard.

Attributes:

None

Type:

Child, PCDATA.

See Also:

11.5.1.37 total_learning_steps (deprecated, 04/01)

Description:

A numeric count of the learning steps for a given learning objective.

Attributes:

None

Type:

Child, PCDATA.

See Also:

11.5.1.38 learning_step_activity

Description:

The smallest unit of instruction. Consists of elements and sub-elements which define the activities to instruct, evaluate and elicit performance assessments.

Attributes:

seq_d, security_class_code, method, target_id, target_lo_id, assoc_reason
Type:

Child/Parent, PCDATA.

See Also:

learning_objective, step_name, instruction_contentmedia_item

, , instruction_duration, instructor_qty, materiel_item, step_task, instruction_note, position, reference_document, practical_exercise, examination, test_item

11.5.1.39 step_name

Description:

The element which provides for a textual name or title entry for a learning_step.

Attributes:

None

Type:

Child, PCDATA.

See Also:

learning_step_activity
11.5.1.40 media

Description: (Depriated)

An empty element to allow for multiple media_item references for a given learning step/activity.

Attributes:

 media_ref, media_place
Type:

Child, EMPTY.

See Also:

11.5.1.41 instruction_content

Description:

The entry to define instruction for a given learning step. May be supported or replaced by a media item which contains the instruction content. Multiple entries are allowed by sequencing using the paragraph_seq attribute. Limited formatting of entries can be done using the indentation attribute to specify an indentation number of spaces from the left margin.

Attributes:

paragraph_seq, indentation
Type:

Child, PCDATA or Media

See Also:

instruction_note
11.5.1.42 content_text

Description:

The element which provides for a textual entry for a learning step instruction content.

Attributes:

None

Type:

Child, PCDATA.

See Also:

instruction_content

11.5.1.43 instruction_duration

Description:

The estimated time in hh:mm for a given learning step instruction.

Attributes:

None

Type:

Child, PCDATA.

See Also:

11.5.1.44 instructor_qty (deprecated,04/01)

Description:

The estimated number of instructor personnel needed for this step. Applies to classroom instruction.

Attributes:

None

Type:

Child, PCDATA.

See Also:

11.5.1.45 materiel_item (deprecated, 04/01)

Description:

The elements necessary to define materiel_item requirements for a given learning_step_activity. One instance for each materiel_item or requirement_code may be defined.

Attributes:

item_id, requirement_code

Type:

Child/Parent, PCDATA.

See Also:

learning_step_activity, item_qty, item_mileage_usage_qty, item_hour_usage_qty, item_remarks

11.5.1.46 item_qty

Description:

The number of a given materiel_item/requirement_code needed in support of a given learning_step_activity.

Attributes:

None

Type:

Child, PCDATA.

See Also:

11.5.1.47 item_mileage_usage_qty

Description:

The number of miles usage required for this instance of a materiel_item/requirement_code.

Attributes:

None

Type:

Child, PCDATA.

See Also:

11.5.1.48 item_hour_usage_qty

Description:

The number of hours usage required for this instance of a materiel_item/requirement_code.

Attributes:

None

Type:

Child, PCDATA.

See Also:

11.5.1.49 item_remarks

Description:

Textual comments associated with this instance of materiel_item.

Attributes:

None

Type:

Child, PCDATA.

See Also:

11.5.1.50 task

Description:

The elements to define an association with one or more tasks and/or Task Performance Steps.

Attributes:

id, type_code
Type:

Child/Parent, PCDATA.

See Also:

learning_step_activity, task_name, task_component, task_step, skill_knowledge

11.5.1.51 task_name

Description:

The name of an associated task.

Attributes:

None

Type:

Child, PCDATA.

See Also:

11.5.1.52 task_component (deprecated,04/01)

Description:

The elements of the task component defintions; Action, Standard, Conditions.

Attributes:

type_code
Type:

Child/Parent, PCDATA.

See Also:

step_task, component_desc

11.5.1.53 component_desc

Description:

The descriptive text for a given task Action, Condition or Standard.

Attributes:

None

Type:

Child, PCDATA.

See Also:

11.5.1.54 task_step
Description:

The element/attributes to reference one or more task performance steps.

Attributes:

record_id
Type:

Child/Parent, PCDATA.

See Also:

task
11.5.1.55 performance_desc

Description:

The descriptive text for a given performance type; Step or Measure.

Attributes:

None

Type:

Child, PCDATA.

See Also:

11.5.1.56 skill_knowledge (deprecated, 04/01)

Description:

The elements to describe data associated to task related skill and knowledge.

Attributes:

id
Type:

Child/Parent, PCDATA.

See Also:

step_task, knowledge, skill

11.5.1.57 knowledge

Description:

The elements which define a knowledge. May be repeated for multiple definitions.

Attributes:

id, cat_code
Type:

Child/Parent, PCDATA.

See Also:

skill_knowledge, knowledge_desc

11.5.1.58 knowledge_desc

Description:

The textual description of a given knowledge category.

Attributes:

None

Type:

Child, PCDATA.

See Also:

11.5.1.59 skill

Description:

The elements which define a skill. May be repeated for multiple definitions.

Attributes:

id, type_code
Type:

Child/Parent, PCDATA.

See Also:

skill_knowledge, skill_desc

11.5.1.60 skill_desc

Description:

The textual description of a given skill type.

Attributes:

None

Type:

Child, PCDATA.

See Also:

11.5.1.61 instruction_note

Description:

The elements which describe instruction notes made concerning Safety, Environment and/or instructor comments, associated with a learning step content.

Attributes:

type_code, note_id
Type:

Child/Parent, PCDATA.

See Also:

learning_step_activity, note_desc, note_text
11.5.1.62 note_desc (deprecated, 04/01)

Description:

The textual description of a given instruction note.

Attributes:

None

Type:

Child, PCDATA.

See Also:

11.5.1.63 note_text

Description:

The text which constitutes an instruction note.

Attributes:

None

Type:

Child, PCDATA.

See Also:

11.5.1.64 position (deprecated, 04/01)

Description:

The elements necessary to define the association of a standard Army Job/Position.

Attributes:

posn_id, sex_restriction

Type:

Parent, PCDATA.

See Also:

learning_step_activity, posn_name, posn_desc

11.5.1.65 posn_name

Description:

The text which provides the name of the associated position id.

Attributes:

None

Type:

Child, PCDATA.

See Also:

11.5.1.66 posn_desc

Description:

The text entry which describes the associated position.

Attributes:

None

Type:

Child, PCDATA.

See Also:

11.5.1.67 reference_document

Description:

The elements necessary to define reference document associations. One instance for each referenced document code may be defined.

Attributes:

None

Type:

Child, PCDATA.

See Also:

learning_step_activity, document
11.5.1.68 media

Description:

The elements necessary to define one or more media_item external metadata references. This entry encompasses all media item references for a given army_learning_object document.

Attributes:

None

Type:

Child, PCDATA.

See Also:

media_item, media_ref
11.5.1.69 media_ref

Description:

This is an EMPTY reference tag which allows a media_item to be referenced as many times as necessary from different locations in the document by its identifier using the media_alias IDREF attribute.

Attributes:

media_alias
Type:

Child, PCDATA.

See Also:

media_item, media
11.5.1.70 media_item

Description:

The elements necessary to define media_item associations for a given ALO component which is supported or reflected by a specific kind of media item. One or more instances of media_item may be defined in an ALO document.

Attributes:

identifier, category_type_code, file_type_code, media_place

Type:

Parent, PCDATA.

See Also:

media, learning_step_activity, media_name, media_desc, access_name, narrative, media_ref

11.5.1.71 media_name

Description:

The user supplied name for the associated media_item.

Attributes:

None

Type:

Child, PCDATA.

See Also:

11.5.1.72 media_desc

Description:

The textual description of the associated media_item.

Attributes:

None

Type:

Child, PCDATA.

See Also:

11.5.1.73 access_name

Description:

The URI/URL for the associated media item.

Attributes:

None

Type:

Child, PCDATA.

See Also:

11.5.1.74 narrative

Description:

A textual narrative, comment related to the associated media_item which may be presented as part of the instruction.

Attributes:

None

Type:

Child, PCDATA.

See Also:

11.5.1.75 practical_exercise

Description:

The elements necessary to define a Practical Esercise document. This document may be associated with or replaced by a check on learning practice test (performance or performance basaed). Practical exercise are initiated from a learning_step_activity where the method=”PE”.

Attributes:

None.

Type:

Child/Parent, PCDATA.

See Also:

learning_step_activity, document

11.5.1.76
exams

Description:

This is a wrapper tag which allows the grouping of all examinations and accompanying test_items applicable for a given ALO document.

Attributes:

None.

Type:

Parent, PCDATA.

See Also:

exam_ref, examination
11.5.1.77
exam_ref

Description:

This is an EMPTY element tag which allows a reference to the applicable exam_id from other applicable elements in the document using the exam_alias target IDREF.
Attributes:

exam_alias
Type:

Child, PCDATA.

11.5.1.78 examination

Description:

The elements necessary to define the association of an examination (test) with a given learning_step_activity. An examination may consist of one or many test_items. The test/examination may be referenced with an exam_ref tag.

Attributes:

exam_id, exam_type, exam_class_code, performance_type, test_type, passing_score, number_items, scramble_questions, max_minutes_allowed

Type:

Parent, PCDATA.

See Also:

learning_step_activity, basic_desc, general_scenario, point_weight_qty, test_item

11.5.1.79 basic_desc

Description:

The description text for a given examination.

Attributes:

None

Type:

Child, PCDATA.

See Also:

11.5.1.80 general_scenario

Description:

The text which sets up the general or overall situation for a given examination/test. May consist of text and/or a media_item.

Attributes:

None

Type:

Child, PCDATA.

See Also:

text, media_item.

11.5.1.81 text

Description:

The element which provides for a textual entry for the element where specified.

Attributes:

None

Type:

Child, PCDATA.

See Also:

general_scenario, scenario_desc, set_scenario, stem, multiple_choice_answer, match_set_ord_text, match_set_subord_text
11.5.1.82 point_weight_qty

Description:

Defines a numeric point weight value to a given examination.
This value is utilized in conjunction with other factors to calculate the overall score for a lesson/module/course.

Attributes:

None

Type:

Child, PCDATA.

See Also:

11.5.1.83 test_item_ref

Description:

This is a reference tag which allows a test_item to be referenced as many times as necessary from different locations in the document.

Attributes:

test_item_alias, test_item_seq
Type:

Child, PCDATA.

See Also:

test_item
11.5.1.84 test_item_pool

Description:

This is a container tag which allows all test_item to be recorded in a pool of items and referenced for the associated examination or learning_step as many times as.

Attributes:

None

Type:

Child, PCDATA.

See Also:

test_item
11.5.1.85 test_item

Description:

The elements which define the items of an examination (test) with the associated item sub-structures and content. This is the container for each type of item; essay, fill-in blank, multiple choice and matching and must be repeated for each item on an examination (test). A test item may be designated to be part of a sub-group of related test items (see set_id). May reference a media_item.

Attributes:

identifier, set_indicator, type_code, question_type, set_id, set_seq_id, weight, scramble_set

Type:

Child/Parent, PCDATA.

See Also:

examination, scenario_desc, stem, essay_test_item, fillin_blank_test_item, multiple_choice_test_item, true_false_test_item, match_test_item, media_item

11.5.1.86 scenario_desc

Description:

The text which sets up the situation for a given test_item. Is the sole question stem for a match_test_item. May consist of text or media_item.

Attributes:

None

Type:

Child, PCDATA.

See Also:

test_item, match_test_item, media_item, text
11.5.1.87 set_scenario

Description:

The text which sets up the situation for a given test_item set. May consist of text or media_item.

Attributes:

None

Type:

Child, PCDATA.

See Also:

test_item, media_item, text
11.5.1.88 stem

Description:

The text which constitutes a test_item or question. May consist of text or media_item.

Attributes:

None.

Type:

Child, PCDATA.

See Also:

 media_item, text
11.5.1.89 essay_test_item

Description:

The elements needed to establish an essay type question.

Attributes:

None

Type:

Child/Parent, PCDATA.

See Also:

test_item, essay_question, essay_response
11.5.1.90 essay_response

Description:

The text of the response provide to the student as a feedback.

Attributes:

None

Type:

Child, PCDATA.

See Also:

11.5.1.91 fillin_blank_test_item

Description:

The elements which define a fill-in the blank, test item.

Attributes:

None

Type:

Parent, PCDATA.

See Also:

test_item, fillin_blank_stem, fillin_blank_item_response, fillin_blank_set
11.5.1.92 fillin_blank_item_response

Description:

The element which defines a fill-in the blank, test item overall, feedback response.

Attributes:

None

Type:

Child, PCDATA.

See Also:

test_item, fillin_blank_test_item

11.5.1.93 fillin_blank_set

Description:

The elements which define a fill-in the blank, test item set of answers and individual feedback responses for one or more blanks to be filled in by the learner.

Attributes:

seq_id

Type:

Child/Parent, PCDATA.

See Also:

test_item, fillin_blank_answerfillin_blank_test_item

, , fillin_blank_response
11.5.1.94 fillin_blank_answer

Description:

The text which represents the correct answer for the blank.

Attributes:

None

Type:

Child, PCDATA.

See Also:

fillin_blank_test_item

11.5.1.95 fillin_blank_response

Description:

The text provided as feedback to the student.

Attributes:

None

Type:

Child, PCDATA.

See Also:

fillin_blank_test_item
11.5.1.96 true_false_test_item

Description:

The elements necessary to define a true/false test item.

Attributes:

None

Type:

Child/Parent, PCDATA.

See Also:

test_item, true_false_question, true_false_answer, true_false_response
11.5.1.97 true_false_answer

Description:

The text of the correct answer. Normally, T or F.

Attributes:

None

Type:

Child, PCDATA.

See Also:

11.5.1.98 true_false_response

Description:

The text of the feedback response given to the student.

Attributes:

None

Type:

Child, PCDATA.

See Also:

11.5.1.99 multiple_choice_test_item

Description:

The elements which define a multiple choice test item.

Attributes:

scramble_distracters

Type:

Child/Parent, PCDATA.

See Also:

test_item, multiple_choice_stem, distracter
11.5.1.100 distracter

Description:

The sub-elements which define the base structure of a multiple choice item distracter, possible response.

Attributes:

answer_code

Type:

Child/Parent, PCDATA.

See Also:

multiple_choice_test_item, multiple_choice_answer_id, multiple_choice_answer, multiple_choice_response
11.5.1.101 multiple_choice_answer_id

Description:

The string which establishes the relative identifier for a given distracter/possible answer.

Attributes:

None

Type:

Child, PCDATA.

See Also:

11.5.1.102 multiple_choice_answer

Description:

The part of a given multiple choice distracter/possible answer which defines the basis of the distacter. May consist of text or media_item.

Attributes:

None

Type:

Child, PCDATA.

See Also:

 media_item, text
11.5.1.103 multiple_choice_response

Description:

The text which provides for student feedback when a given multiple choice detractor/possible answer is chosen by a student.

Attributes:

None

Type:

Child, PCDATA.

See Also:

11.5.1.104 match_test_item

Description:

The elements needed to define a matching test item.

Attributes:

None

Type:

Child/Parent, PCDATA.

See Also:

test_item, scenario_desc, match_set
11.5.1.105 match_set

Description:

The sub-elements required to support a match_test_item.

Attributes:

None

Type:

Child, PCDATA.

See Also:

match_test_item, match_set_ord_id, match_set_ord_text, match_set_subord_id, match_set_subord_text, match_set_response

11.5.1.106 match_set_ord_id

Description:

The string element which defines the ordinate for a given matching set sub-item, i.e., ‘what to match’.

Attributes:

None

Type:

Child, PCDATA.

See Also:

11.5.1.107 match_set_ord_text

Description:

The basis of a given matching set ordinate identifier. May consist of text or media_item.

Attributes:

None

Type:

Child, PCDATA.

See Also:

 media_item, text
11.5.1.108 match_set_subord_id

Description:

The string element which defines the sub-ordinate for a given matching set sub-item, i.e., ‘the match to’ sub-item to the corresponding ordinate. Note: This is not the sequence id for the item corresponding to the ordinate, but the sequence identifier for the correct matching item.

Attributes:

None

Type:

Child, PCDATA.

See Also:

11.5.1.109 match_set_subord_text

Description:

The basis of the ‘match to’ corresponding to the sub-ordinate identifier. May consist of text or media_item.

Attributes:

None

Type:

Child, PCDATA.

See Also:

media_item, text
11.5.1.110 match_set_response

Description:

The text of a feedback response for selecting a given match_set item.

Attributes:

None

Type:

Child, PCDATA.

See Also:

ATTRIBUTE DEFINITIONS AND VALUES

Note: All attributes of Type ID must have a value which is a valid XML name; that is, it must begin with and alpha character and may contain alpha-numeric characters and the the underscore (_) with no imbedded whitespace (blanks).

11.5.1.111 itro_code

Description:

The code that represents the reviewing authorities for a specific COURSE-INSTRUCTIONAL-UNIT.

Applicable Element:

course

Type:

ENUMERATED

Default Value:

None

Possible values:

D - DOD SPONSORED COURSES

L - CO-LOCATED

C - CONSOLIDATED

Q - QUOTE COURSE/NON-ITRO
11.5.1.112 course_type

Description:

The code which represents a specific type of Course.

Applicable Element:

course

Type:

ENUMERATED

Default Value:

None

Possible values:

01 - OFFICER CAREER

02 - OFFICER FUCNTIONAL

03 - OFFICER SPECIALTY

04 - OFFICER ADDITIONAL QUALIFIER

05 - ENLISTED FUNCTIONAL

06 - ENLISTED MOS (RSI)

07 - ENLISTED MOS (NON-RSI)

08 - ENLISTED CAREER DEVELOPMENT

24 - ASSIGNMENT RELATED

62 - MOBILIZATION TRAINING COURSE

11.5.1.113 contract_code

Description:

The code that denotes whether a COURSE-INSTRUCTIONAL-UNIT is contracted.

Applicable Element:

course

Type:

ENUMERATED

Default Value:

None

Possible values:

I - PARTIALLY CONTRACTOR AND GOVERNMENT CONDUCTED ON POST

J - PARTIALLY CONTRACTOR AND GOVERNMENT CONDUCTED OFF POST

K - PARTIALLY CONTRACTOR AND GOVERNMENT CONDUCTED PARTIALLY ON AND PARTILLY OFF POST

N - GOVERNMENT CONDUCTED (NO CONTRACTOR INSTRUCTORS)

O - CONTRACTOR CONDUCTED OFF POST

P - CONTRACTOR CONDUCTED PARTIALLY ON AND PARTIALLY OFF POST

R - CONTRACTOR CONDUCTED ON POST

11.5.1.114 plan_id

Description:

The unique identifier that represents a scheme for achieving an end over time.

Applicable Element:

plan_course_summary

Type:

ID REQUIRED

Default Value:

None

Possible values:

None
11.5.1.115 number_id

Description:

The identifier that represents a specific course, phase, module, or lesson. These are the User-Supplied identifier or number published for the identification of the unit. When Loaded to the ATIA database, an Instructional Unit Identifier is supplied by the DB system to insure uniqueness and is transparent to the user.

Applicable Element:

common_info

Type:

CDATA REQUIRED

Default Value:

None

Possible values:

User Defined values

11.5.1.116 assoc_reason

Description:

The code that represents the underlying basis of an instructional-unit-association.

Applicable Element:

common_info

Type:

ENUMERATED

Default Value:

A

Possible values:

A - INSTRUCTIONAL UNIT IS DEPENDENT ON OTHER INSTRUCTIONAL UNIT

B - INSTRUCTIONAL UNIT IS GROUPED WITH OTHER INSTRUCTIONAL UNIT

C - INSTRUCTIONAL UNIT IS INCLUDED IN OTHER INSTRUCTIONAL UNIT

D - INSTRUCTIONAL UNIT IS PREREQUISITE OF OTHER INSTRUCTIONAL UNIT

E - INSTRUCTIONAL UNIT IS SUPERSEDED BY OTHER INSTRUCTIONAL UNIT

F - INSTRUCTIONAL UNIT IS EQUIVALENT TO OTHER INSTRUCTIONAL UNIT

G - INSTRUCTIONAL UNIT IS ALTERNATE VERSION OF OTHER INSTRUCTIONAL UNIT

11.5.1.117 version

Description:

The user supplied identifier that represents a specific version of a specific course, phase, module, or lesson. Used in conjunction with the Instructional Unit Number Identifier and the Status Code to allow users to version control Instructional Units.

Applicable Element:

common_info

Type:

CDATA

Default Value:

None

Possible values:

None

11.5.1.118 target_num_id (deprecated,04/01)

Description:

A user supplied identifier which points to another instructional_unit number_id. Allows linking of children to parents (lessons to modules, etc.).

Applicable Element:

common_info

Type:

IDREF IMPLIED

Default Value:

None

Possible values:

None

11.5.1.119 type_code

Description:

The code that represents a specific kind of Instructional Unit.

Applicable Element:

common_info

Type:

ENUMERATED REQUIRED

Default Value:

None

Possible values:

C - COURSE

I - INSTRUCTIONAL MODULE

L - LESSON

P – PHASE

11.5.1.120 status_code

Description:

The code which represents an Instructional Unit status.

Applicable Element:

common_info

Type:

ENUMERATED FIXED

Default Value:

A

Possible values:

A - APPROVED

B - CANCELLED

C - DISAPPROVED

D - POSTPONED

E - SCHEDULED

F - SUBMITTED FOR APPROVAL

G – ARCHIVED

11.5.1.121 security_class_code

Description:

The code that represents a security classification.

Applicable Element:

common_info, learning_step_activity

Type:

ENUMERATED

Default Value:

15

Possible values:

01 CONFIDENTIAL

02 CONFIDENTIAL RESTRICTED

03 FOR OFFICIAL USE ONLY

04 NATO

05 NATO CONFIDENTIAL

06 NATO CONFIDENTIAL ATOMAL

07 NATO RESTRICTED

08 NATO SECRET

09 NATO SECRET ATOMAL

10 NATO TOP SECRET

11 NATO TOP SECRET ATOMAL

12 SECRET

13 SECRET RESTRICTED

14 TOP SECRET

15 UNCLASSIFIED

16 UNCLASSIFIED SENSITIVE

98 NOT SPECIFIED

99 NOT KNOWN

11.5.1.122 credit_type

Description:

The code that represents a specific kind of points awarded for the successful completion of an instructional-unit.

Applicable Element:

common_info

Type:

ENUMERATED

Default Value:

None

Possible values:

A - TRAINING HOURS

C - CONTINUING EDUCATION UNITS

Q - QUARTER HOURS

S - SEMESTER HOURS

T - TRIMESTER HOURS

11.5.1.123 mob_code (Deprecated, 06/01)

Description:

The code that denotes whether an instructional-unit is designed to be taught during a time of national emergency.

Applicable Element:

common_info

Type:

ENUMERATED

Default Value:

P

Possible values:

M - INSTRUCTIONAL UNIT DESIGNED TO BE TAUGHT DURING MOBILIZATION

P - INSTRUCTIONAL UNIT DESIGNED TO BE TAUGHT DURING PEACETIME

11.5.1.124 examination_reason (Deprecated, 06/01)

Description:

The code that represents the underlying basis of an instructional-unit-examination.

Applicable Element:

common_info

Type:

ENUMERATED

Default Value:

D

Possible values:

A - EXAMINATION ADMINISTERED AS PART OF INSTRUCTIONAL UNIT

B - INSTRUCTIONAL UNIT IS SUBJECT OF EXAMINATION

C - EXAMINATION RECOMMENDED FOR INSTRUCTIONAL UNIT

D - EXAMINATION REQUIRED FOR INSTRUCTIONAL UNIT

E - EXAMINATION ADMINISTERED AS PRE-TEST FOR INSTRUCTIONAL UNIT

F - EXAMINATION ASMINISTERED AS FINAL TEST FOR INSTRUCTIONAL UNIT

11.5.1.125 type_code

Description:

The code that denotes a subdivision of textual information for an INSTRUCTIONAL-UNIT-COMPONENT.

Applicable Element:

component

Type:

ENUMERATED REQUIRED

Default Value:

None

Possible values:

S - SCOPE - Text describing the extent of training activities related to a specific INSTRUCTIONAL-UNIT

R - REMARKS - Additional comments/remarks about an INSTRUCTIONAL-UNIT

P - PURPOSE - Text describing all required objectives related to an INSTRUCTIONAL-UNIT

C - SPECIAL - Text describing special information related to an INSTRUCTIONAL-UNIT

Q - PREREQUISITE - Text describing the eligibility requirements for taking an INSTRUCTIONAL-UNIT

I - INTRODUCTION - The text of introduction for an instructional-unit

11.5.1.126 strategy_code

Description:

The code that denotes a specific instructional-strategy.

Applicable Element:

module

Type:

ENUMERATED

Default Value:

IP

Possible values:

GP - Group-paced instruction (large group instruction)

SG - Group-paced instruction (Small Group Instruction (SGI))

IP - Individualized, self-paced instruction

ME - Mentoring

PI - Peer Instruction

PG - Programmed Instruction

11.5.1.127 delivery_code

Description:

The code that denotes a specific presentation media used in support of an instructional strategy.

Applicable Element:

module

Type:

ENUMERATED

Default Value:

IC

Possible values:

IC - COMPUTER BASED INSTRUCTION

CC1 - CORRESPONDENCE (INDEPENDENT STUDY)

CC2 - CORRESPONDENCE (GROUP STUDY)

FT - FIELD TRIP

SI - SIMULATION

SO - SIMULATOR

TV- TELEVISION

TA - TRAINING AID

TD1 - TRAINING DEVICE (SYSTEM DEVICE)

TD2 - TRAINING DEVICE (NONSYSTEM DEVICE)

FI - VIDEO (FILM)

TP - VIDEO (TAPE)

VT - VIDEO TELETRAINING (BROADCAST VTT)

DT - VIDEO TELETRAINING (DESKTOP VTT)
11.5.1.128 management_category

Description:

A code that denotes where a module may be presented for resourcing purposes.

Applicable Element:

module

Type:

ENUMERATED

Default Value:

D

Possible values:

A - ACTIVE DUTY FOR TRAINING (ADT)

R - RESIDENT

M - MOBILIZATION

I - INACTIVE DUTY FOR TRAINING (IDT)

D - DISTANCE LEARNING

11.5.1.129 delivery_group (deprecated, 06/01)

Description:

A code which represents a configuration of modules for delivery and resourcing purposes.

Applicable Element:

module

Type:

ENUMERATED

Default Value:

A

Possible values:

The code values for this attribute are discriminators (A, B, C, D, E, etc.). It is assigned by the developer to differentiate between different configurations in which a specific course may be presented or taught. This is at the discretion of the training developer who designs the course.

11.5.1.130 assigned_risk

Description:

The code that denotes the degree to which a risk situation exists.

Applicable Element:

lesson

Type:

ENUMERATED REQUIRED

Default Value:

None

Possible values:

E - EXTREMELY HIGH

H - HIGH

M - MODERATE

L – LOW

11.5.1.131 foreign_disclosure

Description:

The code that represents a specific foreign-disclosure-restriction.

Applicable Element:

lesson

Type:

ENUMERATED

Default Value:

FD1

Possible values:

FD1 - The materials contained in this course have been reviewed by the course developers in coordination with the (installation/activity name) foreign disclosure authority. This course is releasable to students from all requesting foreign countries without restrictions.

FD2 - The materials contained in this course have been reviewed by the course developers in coordination with the (installation/activity name) foreign disclosure authority. This course is releasable to military students from foreign countries on a case-by-case basis. Foreign countries desiring to place students in this course must meet one or more of the following criteria: (1) Own (a specific piece of equipment); (2) Have a signed Letter of Intent (LOI); (3) Have waiver from HQDA; (4) Have USG release for training; (5) etc.

FD3 - The materials contained in this course have been reviewed by the course developers in coordination with the (installation/activity name) foreign disclosure authority. This course is NOT releasable to students from foreign countries.

FD4 - The materials contained in this course have been reviewed by the course developers in coordination with the (installation/activity name) foreign disclosure authority. Some component(s) of this course is(are) NOT releasable to students from foreign countries. See each Training/TATS Course TSP subcomponent/ product for applicable FD restriction statement.

FD5 - This product/publication has been reviewed by the product developers in coordination with the (installation/activity name) foreign disclosure authority. This product is releasable to students from all requesting foreign countries without restrictions.

FD6 - This product/publication has been reviewed by the product developers in coordination with the (installation/activity name) foreign disclosure authority. This product is releasable to students from foreign countries on a case-by-case basis.

FD7 - This product/publication has been reviewed by the product developers in coordination with the (installation/activity name) foreign disclosure authority. This product is NOT releasable to students from foreign countries.

11.5.1.132 reason_code

Description:

The code that represents the underlying basis of an instructional-unit-facility-type.

Applicable Element:

facility_type

Type:

ENUMERATED

Default Value:

A

Possible values:

A - FACILITY TYPE REQUIRED FOR INSTRUCTIONAL UNIT

B - FACILITY TYPE PREFERRED FOR INSTRUCTIONAL UNIT

C - FACILITY TYPE IS AN ALTERNATE FOR INSTRUCTIONAL UNIT

11.5.1.133 doc_id

Description:

The identifier that represents a document.

Applicable Element:

document

Type:

CDATA REQUIRED

Default Value:

None

Possible values:

None

11.5.1.134 doc_category

Description:

The code that denotes a classification of a document.

Applicable Element:

document

Type:

ENUMERATED

Default Value:

L

Possible values:

A ADMINISTRATIVE DOCUMENT

B GUIDANCE DOCUMENT

C HEALTH DOCUMENT

D HISTORICAL DOCUMENT

E IDENTIFICATION DOCUMENT

F LEGAL DOCUMENT

G LOG DOCUMENT

H ORDER DOCUMENT

I PERSONNEL DOCUMENT

J TECHNICAL DOCUMENT

K TEST DOCUMENT

L - GENERAL REFERENCE DOCUMENT

M - MAPS

N - CHARTS

T - TRAINING DOCUMENT

11.5.1.135 doc_type

Description:

The code that identifies the category of a document.

Applicable Element:

document

Type:

ENUMERATED

Default Value:

I

Possible values:

A PROGRAM OF INSTRUCTION (POI)

B COURSE MANAGMENT PLAN (CMP)

C COURSE ADMINISTRATIVE DATA (CAD)

D INDIVIDUAL TRAINING SUPPORT PACKAGE (ITP)

E LESSON PLAN

F PRACTICAL EXERCISE SHEET

G STUDENT EVALUATION PLAN

H STUDENT HANDOUT

11.5.1.136 detail_id

Description:

The identifier of a document-segment-detail specification.

Applicable Element:

document_segment

Type:

ID REQUIRED

Default Value:

None

Possible values:

None

11.5.1.137 seq_id

Description:

The unique identifier which represents a learning objective entry. This identifier is user supplied and applies within the current ALO document to sequence learning objectives in a lesson. When loaded to the ATIA database, learning objectives will be assigned a unique, system generated identifier.

Applicable Element:

learning_objective

Type:

ID REQUIRED

Default Value:

None

Possible values:

None

11.5.1.138 type_code

Description:

The code which represents a specific kind of LEARNING-OBJECTIVE.

Applicable Element:

learning_objective

Type:

ENUMERATED REQUIRED

Default Value:

None

Possible values:

T - TERMINAL LEARNING OBJECTIVE (TLO)

E - ENABLING LEARNING OBJECTIVE (ELO)

NOTE: A lesson is based on a TLO and a TLO may be supported by zero, one, or more ELO's. ELO's can not exist independent of a TLO.

11.5.1.139 assoc_reason (deprecated, 04/01)

Description:

The code that represents the underlying basis of a learning-objective association with others.

Applicable Element:

learning_objective

Type:

ENUMERATED

Default Value:

A

Possible values:

A - GROUPED WITH ANOTHER LEARNING OBJECTIVE

B - COMPONENT OF ANOTHER LEARNING OBJECTIVE

C - PREREQUISITE OF ANOTHER LEARNING OBJECTIVE

D - SUPERSEDED BY ANOTHER LEARNING OBJECTIVE

11.5.1.140 target_id

Description:

The optional identifier which points to another associated learning objective.

Applicable Element:

learning_objective

Type:

IDREF IMPLIED

Default Value:

None

Possible values:

None

11.5.1.141 target_lsn_id (deprecated, 04/01)

Description:

The identifier which points to the parent lesson (instructional_unit) number identifier in the ALO document.

Applicable Element:

learning_objective

Type:

IDREF IMPLIED

Default Value:

None

Possible values:

None

11.5.1.142 type_code

Description:

The code that denotes a subdivision of textual information for a LEARNING-OBJECTIVE-COMPONENT.

Applicable Element:

learning_objective_component

Type:

ENUMERATED REQUIRED

Default Value:

None

Possible values:

ACTION - Text describing a specific action to be performed in a LEARNING-OBJECTIVE

CONDITION - Text describing the training conditions required to accomplish a LEARNING-OBJECTIVE

STANDARD - Text describing the observable criteria required to measure the performance of a LEARNING-OBJECTIVE

11.5.1.143 seq_id

Description:

The unique identifier which represents a learning step/activity entry. This identifier is user supplied and applies within the current ALO document to sequence learning steps in a learning objective. When loaded to the ATIA database, learning steps will be assigned a unique, system generated identifier.

Applicable Element:

learning_step_activity

Type:

ID REQUIRED

Default Value:

None

Possible values:

None

11.5.1.144 target_id

Description:

The identifier which points to another learning step/activity in sequence.

Applicable Element:

learning_step_activity

Type:

IDREF IMPLIED

Default Value:

None

Possible values:

None

11.5.1.145 target_lo_id (deprecated, 04/01)

Description:

The identifier which points to the parent learning_objective for this learning step/activity in the current ALO document.

Applicable Element:

learning_step_activity

Type:

IDREF IMPLIED

Default Value:

None

Possible values:

None

11.5.1.146 assoc_reason (deprecated, 04/01)

Description:

The code that represents the underlying basis of a learning-step-activity-association. Used to facilitate branching from one Learning Step Activity to another in a CBT/WBT Training Sequence.

Applicable Element:

learning_step_activity

Type:

ENUMERATED

Default Value:

A

Possible values:

A - LEARNING-STEP-ACTIVITY IS DEPENDENT ON OTHER LEARNING- STEP-ACTIVITY

B - LEARNING-STEP-ACTIVITY IS GROUPED WITH OTHER LEARNING-STEP-ACTIVITY

C - LEARNING-STEP-ACTIVITY IS INCLUDED IN OTHER LEARNING-STEP-ACTIVITY

D - LEARNING-STEP-ACTIVITY IS PREREQUISITE OF OTHER LEARNING- STEP-ACTIVITY

E - LEARNING-STEP-ACTIVITY IS SUPERCEDED BY OTHER LEARNING- STEP-ACTIVITY

F - LEARNING-STEP-ACTIVITY IS EQUIVALENT TO OTHER LEARNING- STEP-ACTIVITY

G - LEARNING-STEP-ACTIVITY IS ALTERNATE VERSION OF OTHER LEARNING- STEP-ACTIVITY

11.5.1.147 method

Description:

The code which identifies a specific instructional-method for the step.

Applicable Element:

learning_step_activity

Type:

ENUMERATED REQUIRED

Default Value:

None

Possible values:

BR - BRAINSTORMING

CS - CASE STUDY

CO1 - CONFERENCE (DIRECTED DISCUSSION)

CO2 - CONFERENCE (DEVELOPMENTAL DISCUSSION)

CO3 - CONFERENCE (PROBLEM-SOLVING DISCUSSION)

DM - DEMONSTRATION

DF - FLIGHT (DUAL)

SF - FLIGHT (SOLO)

GA - GAMING

GS - GUEST SPEAKER

LE - LECTURE

PD - PANEL DISCUSSION

PE - PRACTICAL EXERCISE (PERFORMANCE)

PE1 - PRACTICAL EXERCISE (HARDWARE ORIENTED)

PE2 - PRACTICAL EXERCISE (NON-HARDWARE ORIENTED)

RS - RESEARCH/STUDY

RP - ROLE PLAYING

SE - SEMINAR

SP - STUDENT PANEL

SA - STUDY ASSIGNMENT

TE - TEST

TE1 - TEST (HARDWARE ORIENTED)

TE2 - TEST (NON-HARDWARE ORIENTED)

TR - TEST REVIEW

TU – TUTORIAL

11.5.1.148 item_id

Description:

The identifier that represents a materiel-item.

Applicable Element:

materiel_item

Type:

ID REQUIRED

Default Value:

None

Possible values:

None

11.5.1.149 requirement_code

Description:

The code that denotes which personnel require a specific materiel-item.

Applicable Element:

materiel_item

Type:

ENUMERATED

Default Value:

A

Possible values:

A - MATERIEL ITEM REQUIRED FOR INSTRUCTOR

B - MATERIEL ITEM REQUIRED FOR STUDENT

C - MATERIEL ITEM REQUIRED FOR SUPPORT PERSONNEL

D - MATERIEL ITEM REQUIRED FOR LEARNING STEP ACTIVITY

E - MATERIEL ITEM REQUIRED FOR ADDITIONAL USE

11.5.1.150 id

Description:

The identifier that represents a task normally the user defined Task Number.

Applicable Element:

task

Type:

CDATA IMPLIED

Default Value:

None

Possible values:

None

11.5.1.151 type_code

Description:

The code that denotes the relationship of a learning-step-activity to the task.

Applicable Element:

step_task

Type:

ENUMERATED REQUIRED

Default Value:

None

Possible values:

R - REINFORCED TASK

S - SUPPORTED TASK

T - TAUGHT TASK

11.5.1.152 type_code

Description:

The code that represents a type of task-component.

Applicable Element:

task_component

Type:

ENUMERATED

Default Value:

C

Possible values:

N - NOTE

E - ENVIRONMENT

S - SAFETY

C - CONDITION

D - STANDARD

G - EVALUATION GUIDANCE

H - EVAULATION PREPARATION

F - FEEDBACK

O - OPFOR

A - CUE

P – PERFORMANCE

11.5.1.153 record_id

Description:

The task relative step number for a given Task.

Applicable Element:

task_step

Type:

CDATA REQUIRED

Default Value:

None

Possible values:

None

11.5.1.154 id

Description:

The identifier that represents a specific skill-knowledge set.

Applicable Element:

skill_knowledge

Type:

ID REQUIRED

Default Value:

None

Possible values:

None

11.5.1.155 id

Description:

The identifier that represents a specific knowledge used in conjunction with a category of knowledge.

Applicable Element:

knowledge

Type:

ID REQUIRED

Default Value:

None

Possible values:

None

11.5.1.156 cat_code

Description:

The code representing a specific classification of knowledge.

Applicable Element:

knowledge

Type:

CDATA

Default Value:

None

Possible values:

(These codes have not yet been defined and delivered by the Army)

11.5.1.157 id

Description:

The identifier that represents a skill.

Applicable Element:

skill

Type:

ID REQUIRED

Default Value:

None

Possible values:

None

11.5.1.158 type_code

Description:

The code that represents a specific kind of skill.

Applicable Element:

skill

Type:

ENUMERATED

Default Value:

B

Possible values:

A - FACILITY-TYPE SKILL

B - GENERAL SKILL

C - LANGUAGE SKILL

D - MATERIEL-ITEM SKILL

E - NOT APPLICABLE

11.5.1.159 occupation_id

Description:

The identifier that represents an occupation. Normally this will be the Army MOS designation; e.g., 76V20, Materiel Storage and Handling Specialist.

Applicable Element:

occupation

Type:

CDATA REQUIRED

Default Value:

None

Possible values:

User Designated

11.5.1.160 occupation_reason

Description:

The code that represents the underlying basis of an occupation-instructional-unit.

Applicable Element:

occupation

Type:

ENUMERATED REQUIRED

Default Value:

NONE

Possible values:

A - INSTRUCTIONAL UNIT PREFERRED FOR OCCUPATION

B - INSTRUCTIONAL UNIT REQUIRED FOR OCCUPATION

11.5.1.161 occupation_type

Description:

The code which represents a category of Uniformed Service Occupations.

Applicable Element:

occupation

Type:

ENUMERATED REQUIRED

Default Value:

None

Possible values:

O - Commissioned Officer Area of Concentration

E - Enlisted Military Occupation Specialties

W - Warrant Officer Military Occupation Specialties

11.5.1.162 career_management_field (Deprecated, 06/01)

Description:

The code which represents an Army Enlisted Career Management Field.

Applicable Element:

occupation

Type:

ENUMERATED

Default Value:

E

Possible values:

11 Infantryman

12 Combat Engineer

13 Field Artillery

14 Air Defense Artillery

18 Special Forces

19 Armor

25 Visual Information

31 Signal Operations

33 Electronic Warfare/Intercept

35 Electronic Maintenance and Clibration

37 Psychological Operations

38 Civil Affairs

46 Public Affairs

51 General engineering

54 Chemical

55 Ammunition

63 Mechanical Maintenance

67 Aircraft Maintnance

71 Administration

74 Information Systems

77 Petroleum and Water

79 Recruiting and Retention

81 Topographic Engineering

88 Transportation

91 Medical

92 Supply and Services

93 Aviation Operations

95 Military Police

96 Military Intelligence

97 Bands

98 Signals Intelligence/Electronic Warfare Operations

11.5.1.163 officer_career_field (Deprecated, 06/01)

Description:

The code which represents an Army Officer Branch or Functional Area.

Applicable Element:

occupation

Type:

ENUMERATED

Default Value:

11

Possible values:

Branches:

11 Infantry

12 Armor

13 Field Artillery

14 Air Defense Artillery

15 Aviation

18 Special Forces

21 Corps of Engineers

25 Signal Corps

31 Military Police Corps

35 Military Intelligence Corps

38 Civil Affairs (Reserve Component only)

42 Adjutant General Corps

44 Finance Corps

55 Judge Advocate General's Corps

56 Chaplain Corps

60 Medical Corps

61 Medical Corps

62 Medical Corps

63 Dental Corps

64 Veterinary Corps

65 Army Medical Specialists

66 Army Nurse corps

67 Medical Service Corps

68 Medical Service Corps

74 Chemical Corps

88 Transportation Corps

91 Ordnance Corps

92 Quartermaster Corps

Army Functional Area.

24 Information Systems Engineering

30 Information Operations

34 Strategic Intelligence

35 MILITARY INTELLIGENCE

39 Psychological Operations and Civil Affairs

40 Space Operations

43 Human Resources Management

45 Comptroller

46 Public Affairs

47 USMA Stabilized Faculty

48 Foreign Area Officer

49 Operations Research/Systems Analysis (ORSA)

50 Force Development

51 Acquisition

52 Nuclear Research and Operations

53 Information Systems Management

57 Simulations Operations

59 Strategic Plans and Policy

90 Logistics

70 Health Services

71 Laboratory Sciences

72 Preventive Medicine Sciences

73 Behavioral Sciences

11.5.1.164 posn_id

Description:

The identifier that represents a position.

Applicable Element:

position

Type:

ID REQUIRED

Default Value:

None

Possible values:

None

11.5.1.165 sex_restriction

Description:

The code that denotes whether a position must be filled by a male or a female.

Applicable Element:

position

Type:

ENUMERATED

Default Value:

N

Possible values:

F - FEMALE REQUIRED

M - MALE REQUIRED

N - NO RESTRICTION

11.5.1.166 identifier

Description:

The identifier representing a graphic/multi-media item. This is a user supplied identifier for use in referencing within a given ALO document. The identifier supplied will be replaced by a system generated identifier to insure uniqueness when loaded to the ATIA database.

Applicable Element:

media_item

Type:

ID REQUIRED

Default Value:

NONE

Possible values:

None

11.5.1.167 category_type_code

Description:

The code that represents a specific kind of media item.

Applicable Element:

media_item

Type:

ENUMERATED REQUIRED

Default Value:

None

Possible values:

1 - AUDIO

2 - VIDEO

3 - STILL GRAPHIC

4 - ANIMATED GRAPHIC

5 - VIRTUAL REALITY GRAPHIC

6 - TEXT

7 - POP-UP TEXT

8 – EXECUTABLE (playable object)

11.5.1.168 file_type_code

Description:

The code that represents a specific media-item file type or format.

Applicable Element:

media_item

Type:

ENUMERATED REQUIRED

Default Value:

None

Possible values:

audio

au

 javascript

js

java-archive

jar

java-serialized-object
jer

java-vm
class

MS Access
 mdb

MS Excel
 xls

MS Powerpoint

 ppt

MS Project

 mpp

MS Word
 doc

MS Metafile

 wmf

MS Windows Help
 hlp

MS Publisher

 pub

MS Schedule

 scd

MS Write

 wri

Adobe Frame Maker
 fm

Adobe PDF

 pdf

Adobe Postscript
 ps

GNU Tar

 gtar

perl

 pl

zip

 zip

GNU Zip

 gz

compressed

 z

uuencoded

 uu

MIDI

 midi

wav

 wav

realaudio

 ram

MPEG

 mpeg

MPEG-2
 mpv2

MS Video

 avi

Quicktime Video
 mov

GIF

 gif

JPEG

 jpeg

PNG

 png

TIFF

 tiff

Bitmap

 bmp

Picture pcx

Photo CD

 pcd

X Bitmap

 xbm

X Pixmap

 xpm

ASCII Text

 txt

HTML Text

 html

Rich Text Format
 rtf

tab-separated-values
 tsv

Cascading Style Sheet
 css

11.5.1.169 media_place

Description:

The placement code for a media_item in relationship to the context for a learning_step_activity, test_item or other ALO component in which it is referenced.

Applicable Element:

media_item

Type:

ENUMERATED

Default Value:

3

Possible values:

1 - Below

2 - Above

3 - To the Left

4 - To the Right

5 - Top Right

6 - Top Center

7 - Top Left

8 - Middle Right

9 - Middle Center

10 - Middle Left

11 - Bottom Right

12 - Bottom Center

13 - Bottom Left

88 - Replaces

99 - Next Page

11.5.1.170 exam_id

Description:

The identifier that represents an examination.

Applicable Element:

examination

Type:

ID REQUIRED

Default Value:

NONE

Possible values:

None

11.5.1.171 exam_type

Description:

The code that represents a specific kind of examination. could be course; phase or module.

Applicable Element:

examination

Type:

ENUMERATED

Default Value:

M

Possible values:

A - ADMINISTRATIVE HEARING

B - APPRAISAL

C - FORMAL INQUIRY

D - INSPECTION

E - INTERVIEW

F - JUDICIAL PROCEEDING

G - OBSERVATION

H - QUESTIONNAIRE

I - REVIEW

J - SCREENING

K - SEARCH

L - SURVEY

M - TEST

N – VERIFICATION

11.5.1.172 exam_class_code

Description:

The code that represents a categorization of an examination.

Applicable Element:

examination

Type:

ENUMERATED

Default Value:

A

Possible values:

A - ACADEMIC

B - ADMINISTRATIVE

C - FINANCIAL

D - LEGAL

E - MEDICAL

F - PERFORMANCE

G – SECURITY

H - CUSTOMER SATISFACTION

I - DENTAL

11.5.1.173 performance_type

Description:

The code that denotes a specific kind of Performance TEST.

Applicable Element:

examination

Type:

ENUMERATED

Default Value:

B

Possible values:

A - PERFORMANCE TEST

B - PERFORMANCE-BASED TEST

11.5.1.174 test_type

Description:

The code that represents a kind of test.

Applicable Element:

examination

Type:

ENUMERATED

Default Value:

B

Possible values:

A - PRE-ACCEPTANCE TEST (PRE-TEST)

B - FIRST ARTICLE TEST

C - END OF INSTRUCTIONAL UNIT TEST (POST-TEST)

D – INFORMAL TEST

11.5.1.175 passing_score

Description:

The minimum numeric score to pass this test.

Applicable Element:

examination

Type:

CDATA REQUIRED

Default Value:

None.

Possible values:

None.

11.5.1.176 number_items

Description:

The quantity count of the number of test items on this test.

Applicable Element:

examination

Type:

CDATA REQUIRED

Default Value:

None.

Possible values:

None.

11.5.1.177 scramble_questions

Description:

The Boolean identifier to specify if the test_items on this test may be scrambled (re-arranged). See also, test_item scramble_set.

Applicable Element:

examination

Type:

ENUMERATED

Default Value:

F

Possible values:

T or F

11.5.1.178 max_minutes_allowed

Description:

The maximum number of minutes allow for the student to complete this test.

Applicable Element:

examination

Type:

CDATA IMPLIED

Default Value:

None.

Possible values:

01-999

11.5.1.179 identifier

Description:

The identifier that represents a specific test-item.

Applicable Element:

test_item

Type:

ID REQUIRED

Default Value:

None

Possible values:

None

11.5.1.180 seq_id
Description:

The number identifier that represents the specific fillin_blank_set of answer and responses in a given fillin_blank_test_item.

Applicable Element:

test_item, fillin_blank_test_item, fillin_blank_set

Type:

CDATA

Default Value:

None

Possible values:

Usually a numeric 1 – n

11.5.1.181 set_indicator

Description:

The code that denotes if a test item is part of a test item set.

Applicable Element:

test_item

Type:

CDATA

Default Value:

None

Possible values:

Boolean – Y/N

11.5.1.182 type_code

Description:

The code that denotes the kind of test-item.

Applicable Element:

test_item

Type:

ENUMERATED

Default Value:

None

Possible values:

1 - EXAM QUESTION (FORMAL TEST-ITEM)

2 - CHECK ON LEARNING (INFORMAL TEST-ITEM)

11.5.1.183 question_type

Description:

The identifier that represents a specific kindof test-item.

Applicable Element:

test_item

Type:

ENUMERATED

Default Value:

M

Possible values:

E – ESSAY

T - TRUE/FALSE

M - MULTIPLE CHOICE

F - FILL-IN BLANK

A – MATCH

11.5.1.184 set_id

Description:

The identifier that represents a specific set of test_items. All subsequent test items belonging to the set must have the same set_id.

Applicable Element:

test_item

Type:

CDATA IMPLIED

Default Value:

None.

Possible values:

None.

11.5.1.185 set_seq_id

Description:

The identifier that represents a specific sequence of the test_item in the set identified for the given set_id.

Applicable Element:

test_item

Type:

CDATA IMPLIED

Default Value:

None.

Possible values:

None.

version

Description:

The version number of the ALO dtd used for this document. It is a FIXED value corresponding to the version number of the current, published dtd.

Attributes:

None

Type:

CDATA, FIXED

See Also:

identification
11.5.1.186 weight

Description:

The quantity which represents the relative weight of a given test_item in relationship to others in a given examination/test.

Applicable Element:

test_item

Type:

CDATA REQUIRED

Default Value:

None.

Possible values:

None.

11.5.1.187 scramble_set

Description:

The Boolean value which denotes that the test_items belonging to the set identified by set_id maybe re-arranged.

Applicable Element:

test_item

Type:

ENUMERATED

Default Value:

F

Possible values:

T or F

11.5.1.188 answer_code

Description:

The code that denotes if a multiple choice test item set answer text represents the correct answer.

T/F

Applicable Element:

multiple_choice_set

Type:

ENUMERATED

Default Value:

F

Possible values:

T – CORRECT ANSWER

F – INCORRECT ANSWER

11.5.1.189 scramble_distracters

Description:

The Boolean value which denotes that the distracters belonging to the test_item maybe re-arranged.

Applicable Element:

test_item

Type:

ENUMERATED

Default Value:

F

Possible values:

T or F

11.5.1.190 type_code

Description:

The code which represents the type of instruction-note.

Applicable Element:

instruction_note

Type:

ENUMERATED REQUIRED

Default Value:

None

Possible values:

A - INSTRUCTOR NOTE

B - ENVIRONMENTAL NOTE

C - SAFETY NOTE

media_place (deprecated)

Description:

The code which defines the placement of a media_item in relationship to the associated Element.

Applicable Element:

learning_step_activity, general_scenario, test_item, set_scenario, scenario_desc, stem, multiple_choice_answer, match_set_ord_text, multiple_choice_subord_text
Type:

CDATA IMPLIED

Default Value:

None

Possible values:

1 - Below

2 - Above

3 - To the Left

4 - To the Right

5 - Top Right

6 - Top Center

7 - Top Left

8 - Middle Right

9 - Middle Center

10 - Middle Left

11 - Bottom Right

12 - Bottom Center

13 - Bottom Left

88 – Replaces

99 – Next Page

11.5.1.191 paragraph_seq

Description:
This is a sequence identifier for sequencing instruction_content text entries for a given learning_step_activity.

Applicable Element:

learning_step_activity, instruction_content
Type:

CDATA IMPLIED

Default Value:

None.

Possible values:

User supplied sequence (1,2,3 … a,b,c etc)

11.5.1.192 indentation

Description:
This attribute may be used with instruction_content entries to specify the indentation in character positions of the entry from the left margin.

Applicable Element:

learning_step_activity, instruction_content
Type:

CDATA

Default Value:

0 (zero).

Possible values:

0, 5, 10, 15, 20 character positions.

11.5.1.193 media_alias

Description:

The target identifier which points to a media_item in the list of items within the media tags in the document.

Applicable Element:

media_ref

Type:

IDREF REQUIRED

Default Value:

None

Possible values:

None

11.5.1.194 exam_alias

Description:

The target identifier which points to a examination in the list of
items within the exams tags in the document.

Applicable Element:

exam_ref

Type:

IDREF REQUIRED

Default Value:

None

Possible values:

None

date

Description:

The date this document is submitted. Formatted as YYYY-MM-DD.

Applicable Element:

identification

Type:

CDATA (DATE)

Default Value:

None

Possible values:

None

note_id

Description:

The identifier which represents a unique Instruction Note instance.

Applicable Element:

instruction_note

Type:

ID REQUIRED

Default Value:

None

Possible values:

None

test_item_alias

Description:

The target identifier which points to a test_item in the list of items within the test_item_pool tags in the document.

Applicable Element:

test_item_ref

Type:

IDREF REQUIRED

Default Value:

None

Possible values:

None

test_item_seq

Description:

This is a sequence identifier for sequencing test_item within a given examination entry.

Applicable Element:

test_item_ref

Type:

CDATA IMPLIED

Default Value:

None

Possible values:

None

[image: image8.wmf]c

o

u

r

s

e

p

h

a

s

e

m

o

d

u

l

e

l

e

s

s

o

n

l

e

a

r

n

i

n

g

_

o

b

j

e

c

t

i

v

e

l

e

a

r

n

i

n

g

_

s

t

e

p

A

r

m

y

L

e

a

r

n

i

n

g

O

b

j

e

c

t

s

M

o

d

e

l

n

u

m

b

e

r

_

i

d

v

e

r

s

i

o

n

t

y

p

e

_

c

o

d

e

s

t

a

t

u

s

_

c

o

d

e

s

e

c

u

r

i

t

y

_

c

l

a

s

s

_

c

o

d

e

c

r

e

d

i

t

_

t

y

p

e

m

o

d

_

c

o

d

e

f

o

r

e

i

g

n

_

d

i

s

c

l

o

s

u

r

e

i

t

r

o

_

c

o

d

e

c

o

u

r

s

e

_

t

y

p

e

c

o

n

t

r

a

c

t

_

c

o

d

e

s

t

r

a

t

e

g

y

_

c

o

d

e

d

e

l

i

v

e

r

y

_

c

o

d

e

d

e

l

i

v

e

r

y

_

g

r

o

u

p

i

d

t

a

r

g

e

t

_

i

d

t

y

p

e

_

c

o

d

e

m

e

d

i

a

_

i

t

e

m

*

i

d

e

n

t

i

f

i

e

r

c

a

t

e

g

o

r

y

_

t

y

p

e

f

i

l

e

_

t

y

p

e

e

x

a

m

i

n

a

t

i

o

n

a

s

s

i

g

n

e

d

_

r

i

s

k

L

E

G

E

N

D

?

=

z

e

r

o

o

r

o

n

e

|

=

e

i

t

h

e

r

/

o

r

+

=

o

n

e

o

r

m

o

r

e

*

=

z

e

r

o

o

r

m

o

r

e

=

o

n

e

N

O

T

E

:

E

x

a

m

i

n

a

t

i

o

n

a

n

d

M

e

d

i

a

_

I

t

e

m

o

b

j

e

c

t

s

c

a

p

t

u

r

e

d

i

n

s

e

p

a

r

a

t

e

x

m

l

d

o

c

u

m

e

n

t

s

.

M

e

d

i

a

_

I

t

e

m

c

a

n

b

e

u

s

e

d

t

o

r

e

f

e

r

e

n

c

e

a

p

l

a

y

a

b

l

e

c

o

n

t

e

n

t

o

b

j

e

c

t

a

t

a

n

y

l

e

v

e

l

.

R

e

d

l

i

n

e

s

i

n

d

i

c

a

t

e

r

e

l

a

t

i

o

n

s

h

i

p

s

w

h

i

c

h

a

r

e

n

o

t

c

u

r

r

e

n

t

l

y

r

e

f

l

e

c

t

e

d

i

n

t

h

e

A

T

I

A

d

a

t

a

b

a

s

e

b

u

t

w

o

u

l

d

b

e

n

e

e

d

e

d

t

o

s

u

p

p

o

r

t

t

h

e

p

l

a

y

o

b

j

e

c

t

l

i

n

k

a

g

e

.

M

e

d

i

a

_

r

e

f

,

E

x

a

m

_

r

e

f

a

n

d

T

e

s

t

_

i

t

e

m

_

r

e

f

a

r

e

a

l

i

a

s

r

e

f

e

r

e

n

c

e

s

t

o

m

e

d

i

a

_

i

t

e

m

,

e

x

a

m

i

n

a

t

i

o

n

a

n

d

t

e

s

t

_

i

t

e

m

,

r

e

s

p

e

c

t

i

v

e

l

y

.

T

h

e

s

e

r

e

f

e

r

e

n

c

e

t

a

g

s

a

l

l

o

w

f

o

r

e

n

t

e

r

i

n

g

e

x

a

m

i

n

a

t

i

o

n

,

t

e

s

t

_

i

t

e

m

s

a

n

m

e

d

i

a

_

i

t

e

m

s

o

n

c

e

i

n

a

d

o

c

u

m

e

n

t

a

n

d

r

e

f

e

r

i

n

g

t

o

t

h

e

m

f

r

o

m

m

u

l

t

i

p

l

e

o

c

c

u

r

a

n

c

e

s

.

c

o

m

m

o

n

i

n

f

o

|

c

o

m

m

o

n

i

n

f

o

c

o

m

m

o

n

i

n

f

o

c

o

m

m

o

n

i

n

f

o

+

+

m

e

d

i

a

_

r

e

f

t

e

s

t

_

i

t

e

m

m

e

d

i

a

_

r

e

f

e

x

a

m

_

r

e

f

N

O

T

E

:

c

o

m

m

o

n

_

i

n

f

o

i

s

a

c

o

l

l

e

c

t

i

o

n

o

f

c

o

m

m

o

n

e

l

e

m

e

n

t

s

w

h

i

c

h

a

r

e

a

p

p

l

i

c

a

b

l

e

t

o

a

l

l

l

e

v

e

l

s

d

o

w

n

t

o

L

e

s

s

o

n

.

S

h

a

d

e

d

,

3

D

b

o

x

e

s

a

r

e

m

a

i

n

o

b

j

e

c

t

s

,

2

D

b

o

x

e

s

l

a

b

e

l

e

d

w

i

t

h

_

r

e

f

a

r

e

r

e

f

e

r

e

n

c

e

p

o

i

n

t

e

r

s

t

o

t

h

e

a

s

s

o

c

i

a

t

e

d

o

b

j

e

c

t

(

m

e

d

i

a

,

e

x

a

m

o

r

t

e

s

t

_

i

t

e

m

)

.

+

*

m

e

d

i

a

_

r

e

f

e

x

a

m

_

r

e

f

m

e

d

i

a

_

r

e

f

t

e

s

t

_

i

t

e

m

_

r

e

f

|

e

x

a

m

_

r

e

f

*

*

i

d

e

n

t

i

f

i

e

r

s

e

q

_

i

d

s

e

t

_

i

n

d

i

c

a

t

o

r

t

y

p

e

_

c

o

d

e

q

u

e

s

t

i

o

n

_

t

y

p

e

s

e

t

_

i

d

s

e

t

_

s

e

q

_

i

d

w

e

i

g

h

t

s

c

r

a

m

b

l

e

_

s

e

t

+

o

c

c

u

p

a

t

i

o

n

?

?

*

?

?

i

d

t

a

r

g

e

t

_

i

d

s

e

c

u

r

i

t

y

_

c

l

a

s

s

_

c

o

d

e

m

e

t

h

o

d

m

e

d

i

a

_

r

e

f

e

x

a

m

_

i

d

p

e

r

f

o

r

m

a

n

c

e

_

t

y

p

e

t

e

s

t

_

t

y

p

e

n

u

m

b

e

r

_

i

t

e

m

s

p

a

s

s

i

n

g

_

s

c

o

r

e

s

c

r

a

m

b

l

e

_

i

t

e

m

s

m

a

x

_

m

i

n

u

t

e

s

_

a

l

l

o

w

e

d

t

a

s

k

*

c

o

m

p

o

n

e

n

t

*

*

?

*

m

e

d

i

a

_

r

e

f

*

?

d

e

s

c

r

i

p

t

i

o

n

*

c

o

n

t

e

n

t

� EXTRACTED from the DII COE Integration & Runtime Environment 4.1; para 8.2

� Developers should be aware that the CLASSPATH environment variable setting is not used to find application jar files. Application jar files must be explicitly specified by a classpath flag passed to the Java runtime environment.

� To aid in migration of legacy Java code, developers may obtain interim cognizant Chief Engineer approval to create a global CLASSPATH environment variable and append their search path to it. The Community segment descriptor should be used as the interim method for appending to the search path.

� Note:	The Java tools do not require that the system class libraries path be specified in the -cp search path since the tools automatically search the system class libraries. However, developers are strongly encouraged to explicitly include the system class libraries in the search path because there may be more than one JVM version and associated class libraries in the system. Explicitly stating the class libraries location is the only way to ensure that the developer gets the expected version of the class libraries.

� Jar filenames thus become part of the segment’s “API” in that it defines an interface to the segment that a segment developer must know in order to use the class files in the jar. Thus, once a jar filename is chosen and published as an interface, it follows the same restrictions on backward compatibility as traditional “APIs.”

� It is envisioned that a future I&RTS release may contain segment descriptors to automate this process for developers, or better solutions for sharing class/jar files may be negotiated into the Java standard.

� Note that private fields named firstName and ssn must exist. The return type should be the same type as firstName and ssn. For simplicity I return Object in this example.

� Note that the private fields valid, local, and authorized must all exist and be type boolean.

� Note that private fields named firstName and ssn must exist. As before, I use type Object for demonstration only. They should be replaced with the specific types of firstName and ssn.

PAGE
29
ATIA Compliance Standards, Version 3.1

3 April 2002

_1057726873.txt
EDGE Diagram File
Version 3.50

Globals Section:

X -10
Y 130
Scale 90
PosterRows 1
PosterCols 1
Color1 255,255,255
Color2 192,192,192
Color3 130,130,130
Color4 0,0,0
Color5 0,255,255
Color6 0,0,255
Color7 0,0,160
Color8 128,0,128
Color9 255,128,0
Color10 255,0,0
Color11 128,0,64
Color12 128,64,0
Color13 0,255,0
Color14 0,128,0
Color15 128,128,255
Color16 255,255,0
GridX 32
GridY 32
SnapX 16
SnapY 16
SnapConPtsCentersEdges TRUE
ShadowColor 130,130,130
ShadowX 11
ShadowY 11
ShowGrid FALSE
AlignToGrid FALSE
AlignToGridConPts FALSE
AttachMode 2
SBarWidth 108
SBarFigCols 2
SBarLblCols 1
SBarConCols 2
SBarFigHeight 28
SBarLblHeight 32
SBarConHeight 20
Parent ""
LargeDropMenus FALSE
LastEnd "taper"
LastEndLen 36
ConPointMarks 1
CornerRadius 32

DevMode 716
{
4850204C617365724A6574203500000000000000000000000000000000000000
010400059C00300243FF800502000100EA0A6F08640001000F00580201000100
5802030001004C657474657200
00010000000000000001000000
0200000001000000FFFFFFFF0000000000000000000000000000000044494E55
22000000300200001B42A2ED00
0000000000000000090000000100000000000000000000000000000000000000
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
000000000000000000000000
}

DevNames 53
{
080011001F00010077696E73706F6F6C004850204C617365724A65742035004C
5054313A0000000000000000000000000000000000
}

Graphics Section:

Figure Symbols Section:

FigureSymbol "3dr box1"
{
 FixedAspect FALSE
 Height 192
 Width 192
 TextBox 50,150,850,950
 Fill
 {
 Polygon 7 0,1000 0,100 100,0 1000,0 1000,900 900,1000 0,1000
 }
 Outline
 {
 Polyline 7 0,1000 0,100 100,0 1000,0 1000,900 900,1000 0,1000
 Line 900,100 1000,0
 Line 0,100 900,100
 Line 900,1000 900,100
 }
 Hot 7 0,1000 0,100 100,0 1000,0 1000,900 900,1000 0,1000
}

FigureSymbol "3dr box2"
{
 FixedAspect FALSE
 Height 192
 Width 192
 TextBox 50,250,750,950
 Fill
 {
 Polygon 7 0,1000 0,200 200,0 1000,0 1000,800 800,1000 0,1000
 }
 Outline
 {
 Polyline 7 0,1000 0,200 200,0 1000,0 1000,800 800,1000 0,1000
 Line 800,200 1000,0
 Line 0,200 800,200
 Line 800,1000 800,200
 }
 Hot 7 0,1000 0,200 200,0 1000,0 1000,800 800,1000 0,1000
}

FigureSymbol "square"
{
 FixedAspect FALSE
 Height 192
 Width 192
 TextBox 100,100,900,900
 Fill
 {
 Rect 0,0,1000,1000
 }
 Outline
 {
 Rect 0,0,1000,1000
 }
}

FigureSymbol "rectangle"
{
 FixedAspect FALSE
 Height 128
 Width 192
 TextBox 100,100,900,900
 Fill
 {
 Rect 0,0,1000,1000
 }
 Outline
 {
 Rect 0,0,1000,1000
 }
}

End Symbols Section:

Figure Styles Section:

FigureStyle "null"
{
 Label TRUE
 Height 172
 Width 256
 BindToStyle FALSE
 TextFormat 0x0044
 Behavior 0x000251E1
 Symbol "lbl"
 TypeSize 8
 TypeFace "Arial"
}

Connector Styles Section:

ConnectorStyle "Connector Style 1"
{
 End1 "null"
 End2 "null"
 End1Length 32
 End2Length 32
 LineWidth 3
 Behavior 0x00000000
}

Figures & Connectors Section:

Figure 1
{
 Text "course"
 Bounds 120,813,312,893
 FillColor 204,252,252
 BindToStyle FALSE
 TextFormat 0x0022
 Behavior 0x00024E12
 Symbol "3dr box1"
 TypeSize 8
 TypeFace "Arial"
}

Figure 2
{
 Text "phase"
 Bounds 611,675,803,751
 FillColor 204,252,252
 BindToStyle FALSE
 TextFormat 0x0022
 Behavior 0x00024E12
 Symbol "3dr box1"
 TypeSize 8
 TypeFace "Arial"
}

Figure 3
{
 Text "module"
 Bounds 963,820,1155,896
 FillColor 204,252,252
 BindToStyle FALSE
 TextFormat 0x0022
 Behavior 0x00024E12
 Symbol "3dr box1"
 TypeSize 8
 TypeFace "Arial"
}

Figure 4
{
 Text "lesson"
 Bounds 1359,813,1551,889
 FillColor 204,252,252
 BindToStyle FALSE
 TextFormat 0x0022
 Behavior 0x00024E12
 Symbol "3dr box1"
 TypeSize 8
 TypeFace "Arial"
}

Figure 5
{
 Text "learning_objective"
 Bounds 1740,816,2019,892
 FillColor 204,252,252
 BindToStyle FALSE
 TextFormat 0x0022
 Behavior 0x00024E12
 Symbol "3dr box1"
 TypeSize 8
 TypeFace "Arial"
}

Figure 6
{
 Text "learning_step"
 Bounds 2207,819,2418,895
 FillColor 204,252,252
 BindToStyle FALSE
 TextFormat 0x0022
 Behavior 0x00024E12
 Symbol "3dr box1"
 TypeSize 8
 TypeFace "Arial"
}

Figure 7
{
 Label TRUE
 Style "null"
 Text "{\fonttbl {\f0 Arial;}{\f1 Comic Sans MS;}}\b1\f1\fs28 Army Learn-
ing Objects Model"
 Bounds 1038,93,1732,150
 BindToStyle FALSE
 TextFormat 0x0044
 Behavior 0x000251E1
 Symbol "lbl"
 TypeSize 8
 TypeFace "Arial"
}

Figure 14
{
 Label TRUE
 Style "null"
 Text "number_id\line version\line type_code\line status_code\line secur-
ity_class_code\line credit_type\line mod_code\line foreign_disclo-
sure"
 Bounds 1111,1221,1362,1478
 BindToStyle FALSE
 TextFormat 0x0044
 Behavior 0x000251E1
 Symbol "lbl"
 TypeSize 8
 TypeFace "Arial"
}

Figure 15
{
 Label TRUE
 Style "null"
 Text "itro_code\line course_type\line contract_code"
 Bounds 129,894,305,991
 BindToStyle FALSE
 TextFormat 0x0044
 Behavior 0x000251E1
 Symbol "lbl"
 TypeSize 8
 TypeFace "Arial"
}

Figure 16
{
 Label TRUE
 Style "null"
 Text "strategy_code\line delivery_code\line delivery_group\line "
 Bounds 960,901,1142,1030
 BindToStyle FALSE
 TextFormat 0x0044
 Behavior 0x000251E1
 Symbol "lbl"
 TypeSize 8
 TypeFace "Arial"
}

Figure 17
{
 Label TRUE
 Style "null"
 Text "id\line target_id\line type_code\line "
 Bounds 1748,894,1877,1023
 BindToStyle FALSE
 TextFormat 0x0044
 Behavior 0x000251E1
 Symbol "lbl"
 TypeSize 8
 TypeFace "Arial"
}

Figure 18
{
 Text "media_item*"
 Bounds 120,1530,343,1590
 FillColor 204,252,252
 BindToStyle FALSE
 TextFormat 0x0022
 Behavior 0x00024E12
 Symbol "3dr box2"
 TypeSize 8
 TypeFace "Arial"
}

Figure 19
{
 Label TRUE
 Style "null"
 Text "identifier\line category_type\line file_type\line \line "
 Bounds 133,1594,307,1755
 BindToStyle FALSE
 TextFormat 0x0044
 Behavior 0x000251E1
 Symbol "lbl"
 TypeSize 8
 TypeFace "Arial"
}

Figure 20
{
 Text "examination"
 Bounds 118,1121,341,1181
 FillColor 204,252,252
 BindToStyle FALSE
 TextFormat 0x0022
 Behavior 0x00024E12
 Symbol "3dr box2"
 TypeSize 8
 TypeFace "Arial"
}

Figure 23
{
 Label TRUE
 Style "null"
 Text "assigned_risk\line \line "
 Bounds 1359,889,1531,986
 BindToStyle FALSE
 TextFormat 0x0044
 Behavior 0x000251E1
 Symbol "lbl"
 TypeSize 8
 TypeFace "Arial"
}

Figure 24
{
 Label TRUE
 Style "null"
 Text " LEGEND\line ? = zero or one\line | = either/or\line + = one -
or more\line * = zero or more\line = one"
 Bounds 145,301,353,494
 BindToStyle FALSE
 TextFormat 0x0044
 Behavior 0x000251E1
 Symbol "lbl"
 TypeSize 8
 TypeFace "Arial"
}

Figure 25
{
 Label TRUE
 Style "null"
 Text "NOTE: \line Examination and Media_Item objects captured in separa-
te xml documents. \line Media_Item can be used to reference a pla-
yable content object at any level.\line Red lines indicate relati-
onships which are not currently reflected in the ATIA database bu-
t would be needed to support the play object linkage.\line Media_-
ref, Exam_ref and Test_item_ref are alias references to media_ite-
m, examination and test_item, respectively. These reference tag-
s\line allow for entering examination, test_items an media_items -
once in a document and refering to them from multiple occurances."
 Bounds 96,1889,1842,2082
 BindToStyle FALSE
 TextFormat 0x0044
 Behavior 0x000251E1
 Symbol "lbl"
 TypeSize 8
 TypeFace "Arial"
}

Figure 26
{
 Text "common info"
 Bounds 1105,1143,1369,1219
 FillColor 204,252,252
 BindToStyle FALSE
 TextFormat 0x0022
 Behavior 0x00024E12
 Symbol "3dr box1"
 TypeSize 8
 TypeFace "Arial"
}

Figure 27
{
 Text "|"
 Bounds 453,833,511,883
 BindToStyle FALSE
 TextFormat 0x0022
 Behavior 0x00024E12
 Symbol "square"
 TypeSize 8
 TypeFace "Arial"
}

Connector 28
{
 Style "Connector Style 1"
 Figure1 -1
 Figure2 -1
 EndPoint1 307,858
 EndPoint2 456,858
 SuppressEnd1 FALSE
 SuppressEnd2 FALSE
 End1 "null"
 End2 "null"
 End1Length 32
 End2Length 32
 LineWidth 5
 Behavior 0x00000000
}

Figure 29
{
 Text "common info"
 Bounds 1389,619,1589,693
 BindToStyle FALSE
 TextFormat 0x0022
 Behavior 0x00024E12
 Symbol "rectangle"
 TypeSize 8
 TypeFace "Arial"
}

Figure 30
{
 Text "common info"
 Bounds 1773,628,1973,698
 BindToStyle FALSE
 TextFormat 0x0022
 Behavior 0x00024E12
 Symbol "rectangle"
 TypeSize 8
 TypeFace "Arial"
}

Figure 31
{
 Text "common info"
 Bounds 951,618,1151,692
 BindToStyle FALSE
 TextFormat 0x0022
 Behavior 0x00024E12
 Symbol "rectangle"
 TypeSize 8
 TypeFace "Arial"
}

Connector 32
{
 Style "Connector Style 1"
 Figure1 -1
 Figure2 -1
 EndPoint1 514,852
 EndPoint2 611,715
 SuppressEnd1 FALSE
 SuppressEnd2 FALSE
 End1 "null"
 End2 "null"
 End1Length 32
 End2Length 32
 LineWidth 3
 Behavior 0x00000000
}

Connector 33
{
 Style "Connector Style 1"
 Figure1 -1
 Figure2 -1
 EndPoint1 797,715
 EndPoint2 961,861
 SuppressEnd1 FALSE
 SuppressEnd2 FALSE
 End1 "null"
 End2 "null"
 End1Length 32
 End2Length 32
 LineWidth 3
 Behavior 0x00000000
}

Figure 34
{
 Label TRUE
 Style "null"
 Text "+"
 Bounds 868,770,885,803
 BindToStyle FALSE
 TextFormat 0x0022
 Behavior 0x003A59D2
 Symbol "lbl"
 TypeSize 8
 TypeFace "Arial"
}

Connector 35
{
 Style "Connector Style 1"
 Figure1 -1
 Figure2 -1
 EndPoint1 511,858
 EndPoint2 958,858
 SuppressEnd1 FALSE
 SuppressEnd2 FALSE
 End1 "null"
 End2 "null"
 End1Length 32
 End2Length 32
 LineWidth 5
 Behavior 0x00000000
}

Figure 36
{
 Label TRUE
 Style "null"
 Text "+"
 Bounds 690,843,707,876
 BindToStyle FALSE
 TextFormat 0x0022
 Behavior 0x003A59D2
 Symbol "lbl"
 TypeSize 8
 TypeFace "Arial"
}

Connector 37
{
 Style "Connector Style 1"
 Figure1 -1
 Figure2 -1
 EndPoint1 800,706
 EndPoint2 949,660
 SuppressEnd1 FALSE
 SuppressEnd2 FALSE
 End1 "null"
 End2 "null"
 End1Length 32
 End2Length 32
 LineWidth 3
 Behavior 0x00000000
}

Connector 38
{
 Style "Connector Style 1"
 Figure1 -1
 Figure2 -1
 EndPoint1 1154,846
 EndPoint2 1393,659
 SuppressEnd1 FALSE
 SuppressEnd2 FALSE
 End1 "null"
 End2 "null"
 End1Length 32
 End2Length 32
 LineWidth 3
 Behavior 0x00000000
}

Figure 39
{
 Text "media_ref"
 Bounds 2547,737,2739,801
 BindToStyle FALSE
 TextFormat 0x0022
 Behavior 0x00024E12
 Symbol "rectangle"
 TypeSize 8
 TypeFace "Arial"
}

Figure 41
{
 Text "test_item"
 Bounds 614,1500,837,1560
 FillColor 204,252,252
 BindToStyle FALSE
 TextFormat 0x0022
 Behavior 0x00024E12
 Symbol "3dr box2"
 TypeSize 8
 TypeFace "Arial"
}

Figure 42
{
 Text "media_ref"
 Bounds 1563,1030,1755,1104
 BindToStyle FALSE
 TextFormat 0x0022
 Behavior 0x00024E12
 Symbol "rectangle"
 TypeSize 8
 TypeFace "Arial"
}

Figure 43
{
 Text "exam_ref"
 Bounds 1563,1143,1755,1217
 BindToStyle FALSE
 TextFormat 0x0022
 Behavior 0x00024E12
 Symbol "rectangle"
 TypeSize 8
 TypeFace "Arial"
}

Figure 44
{
 Label TRUE
 Style "null"
 Text "NOTE: common_info is a collection of common elements which are \-
line applicable to all levels down to Lesson. \line Shaded, 3D b-
oxes are main objects, 2D boxes labeled with _ref are\line refere-
nce pointers to the associated object (media, exam or test_item)."
 Bounds 1819,394,2689,523
 BindToStyle FALSE
 TextFormat 0x0044
 Behavior 0x000251E1
 Symbol "lbl"
 TypeSize 8
 TypeFace "Arial"
}

Connector 45
{
 Style "Connector Style 1"
 Figure1 -1
 Figure2 -1
 EndPoint1 1154,856
 EndPoint2 1354,856
 SuppressEnd1 FALSE
 SuppressEnd2 FALSE
 End1 "null"
 End2 "null"
 End1Length 32
 End2Length 32
 LineWidth 5
 Behavior 0x00000000
}

Figure 46
{
 Label TRUE
 Style "null"
 Text "+"
 Bounds 1234,841,1251,874
 BindToStyle FALSE
 TextFormat 0x0022
 Behavior 0x003A59D2
 Symbol "lbl"
 TypeSize 8
 TypeFace "Arial"
}

Connector 47
{
 Style "Connector Style 1"
 Figure1 -1
 Figure2 -1
 EndPoint1 2008,859
 EndPoint2 2204,859
 SuppressEnd1 FALSE
 SuppressEnd2 FALSE
 End1 "null"
 End2 "null"
 End1Length 32
 End2Length 32
 LineWidth 7
 Behavior 0x00000000
}

Figure 48
{
 Label TRUE
 Style "null"
 Text "*"
 Bounds 2111,844,2123,877
 BindToStyle FALSE
 TextFormat 0x0022
 Behavior 0x003A59D2
 Symbol "lbl"
 TypeSize 8
 TypeFace "Arial"
}

Figure 49
{
 Text "media_ref"
 Bounds 2217,708,2409,772
 BindToStyle FALSE
 TextFormat 0x0022
 Behavior 0x00024E12
 Symbol "rectangle"
 TypeSize 8
 TypeFace "Arial"
}

Figure 50
{
 Text "exam_ref"
 Bounds 2552,845,2744,919
 BindToStyle FALSE
 TextFormat 0x0022
 Behavior 0x00024E12
 Symbol "rectangle"
 TypeSize 8
 TypeFace "Arial"
}

Figure 51
{
 Text "media_ref"
 Bounds 646,1306,844,1380
 BindToStyle FALSE
 TextFormat 0x0022
 Behavior 0x00024E12
 Symbol "rectangle"
 TypeSize 8
 TypeFace "Arial"
}

Figure 52
{
 Text "test_item_ref"
 Bounds 2539,961,2742,1035
 BindToStyle FALSE
 TextFormat 0x0022
 Behavior 0x00024E12
 Symbol "rectangle"
 TypeSize 8
 TypeFace "Arial"
}

Figure 53
{
 Text "|"
 Bounds 479,1376,537,1426
 BindToStyle FALSE
 TextFormat 0x0022
 Behavior 0x00024E12
 Symbol "square"
 TypeSize 8
 TypeFace "Arial"
}

Figure 54
{
 Text "exam_ref"
 Bounds 2216,594,2408,668
 BindToStyle FALSE
 TextFormat 0x0022
 Behavior 0x00024E12
 Symbol "rectangle"
 TypeSize 8
 TypeFace "Arial"
}

Connector 55
{
 Style "Connector Style 1"
 Figure1 -1
 Figure2 -1
 EndPoint1 538,1401
 EndPoint2 642,1349
 SuppressEnd1 FALSE
 SuppressEnd2 FALSE
 End1 "null"
 End2 "null"
 End1Length 32
 End2Length 32
 LineWidth 3
 Color 252,4,4
 Behavior 0x00000000
}

Figure 56
{
 Label TRUE
 Style "null"
 Text "*"
 Bounds 589,1358,601,1391
 BindToStyle FALSE
 TextFormat 0x0022
 Behavior 0x003A59D2
 Symbol "lbl"
 TypeSize 8
 TypeFace "Arial"
}

Connector 57
{
 Style "Connector Style 1"
 Figure1 -1
 Figure2 -1
 EndPoint1 540,1398
 EndPoint2 625,1515
 SuppressEnd1 FALSE
 SuppressEnd2 FALSE
 End1 "null"
 End2 "null"
 End1Length 32
 End2Length 32
 LineWidth 3
 Behavior 0x00000000
}

Figure 58
{
 Label TRUE
 Style "null"
 Text "*"
 Bounds 576,1440,588,1473
 BindToStyle FALSE
 TextFormat 0x0022
 Behavior 0x003A59D2
 Symbol "lbl"
 TypeSize 8
 TypeFace "Arial"
}

Figure 59
{
 Label TRUE
 Style "null"
 Text "identifier\line seq_id\line set_indicator\line type_code\line que-
stion_type\line set_id\line set_seq_id\line weight\line scramble_-
set"
 Bounds 616,1562,791,1851
 TextColor 4,4,4
 BindToStyle FALSE
 TextFormat 0x0044
 Behavior 0x000251E1
 Symbol "lbl"
 TypeSize 8
 TypeFace "Arial"
}

Connector 60
{
 Style "Connector Style 1"
 Figure1 -1
 Figure2 -1
 EndPoint1 1541,844
 EndPoint2 1775,663
 SuppressEnd1 FALSE
 SuppressEnd2 FALSE
 End1 "null"
 End2 "null"
 End1Length 32
 End2Length 32
 LineWidth 3
 Behavior 0x00000000
}

Connector 61
{
 Style "Connector Style 1"
 Figure1 -1
 Figure2 -1
 EndPoint1 1544,849
 EndPoint2 1737,849
 SuppressEnd1 FALSE
 SuppressEnd2 FALSE
 End1 "null"
 End2 "null"
 End1Length 32
 End2Length 32
 LineWidth 7
 Behavior 0x00000000
}

Figure 62
{
 Label TRUE
 Style "null"
 Text "+"
 Bounds 1629,834,1646,867
 BindToStyle FALSE
 TextFormat 0x0022
 Behavior 0x003A59D2
 Symbol "lbl"
 TypeSize 8
 TypeFace "Arial"
}

Figure 63
{
 Text "occupation"
 Bounds 1563,1261,1755,1335
 BindToStyle FALSE
 TextFormat 0x0022
 Behavior 0x00024E12
 Symbol "rectangle"
 TypeSize 8
 TypeFace "Arial"
}

Connector 64
{
 Style "Connector Style 1"
 Figure1 -1
 Figure2 -1
 EndPoint1 1367,1183
 EndPoint2 1562,1057
 SuppressEnd1 FALSE
 SuppressEnd2 FALSE
 End1 "null"
 End2 "null"
 End1Length 32
 End2Length 32
 LineWidth 3
 Color 252,4,4
 Behavior 0x00000000
}

Figure 65
{
 Label TRUE
 Style "null"
 Text "?"
 Bounds 1462,1102,1479,1135
 BindToStyle FALSE
 TextFormat 0x0022
 Behavior 0x003A59D2
 Symbol "lbl"
 TypeSize 8
 TypeFace "Arial"
}

Connector 66
{
 Style "Connector Style 1"
 Figure1 -1
 Figure2 -1
 EndPoint1 1361,1183
 EndPoint2 1562,1183
 SuppressEnd1 FALSE
 SuppressEnd2 FALSE
 End1 "null"
 End2 "null"
 End1Length 32
 End2Length 32
 LineWidth 3
 Behavior 0x00000000
}

Figure 67
{
 Label TRUE
 Style "null"
 Text "?"
 Bounds 1460,1168,1477,1201
 BindToStyle FALSE
 TextFormat 0x0022
 Behavior 0x003A59D2
 Symbol "lbl"
 TypeSize 8
 TypeFace "Arial"
}

Connector 68
{
 Style "Connector Style 1"
 Figure1 -1
 Figure2 -1
 EndPoint1 1366,1186
 EndPoint2 1562,1294
 SuppressEnd1 FALSE
 SuppressEnd2 FALSE
 End1 "null"
 End2 "null"
 End1Length 32
 End2Length 32
 LineWidth 3
 Behavior 0x00000000
}

Figure 69
{
 Label TRUE
 Style "null"
 Text "*"
 Bounds 1468,1230,1480,1263
 BindToStyle FALSE
 TextFormat 0x0022
 Behavior 0x003A59D2
 Symbol "lbl"
 TypeSize 8
 TypeFace "Arial"
}

Connector 70
{
 Style "Connector Style 1"
 Figure1 -1
 Figure2 -1
 EndPoint1 2008,856
 EndPoint2 2210,630
 SuppressEnd1 FALSE
 SuppressEnd2 FALSE
 End1 "null"
 End2 "null"
 End1Length 32
 End2Length 32
 LineWidth 3
 Color 252,4,4
 Behavior 0x00000000
}

Figure 71
{
 Label TRUE
 Style "null"
 Text "?"
 Bounds 2116,711,2133,744
 BindToStyle FALSE
 TextFormat 0x0022
 Behavior 0x003A59D2
 Symbol "lbl"
 TypeSize 8
 TypeFace "Arial"
}

Connector 72
{
 Style "Connector Style 1"
 Figure1 -1
 Figure2 -1
 EndPoint1 2012,856
 EndPoint2 2210,736
 SuppressEnd1 FALSE
 SuppressEnd2 FALSE
 End1 "null"
 End2 "null"
 End1Length 32
 End2Length 32
 LineWidth 3
 Color 252,4,4
 Behavior 0x00000000
}

Figure 73
{
 Label TRUE
 Style "null"
 Text "?"
 Bounds 2115,774,2132,807
 BindToStyle FALSE
 TextFormat 0x0022
 Behavior 0x003A59D2
 Symbol "lbl"
 TypeSize 8
 TypeFace "Arial"
}

Figure 74
{
 Label TRUE
 Style "null"
 Text "id\line target_id\line security_class_code\line method\line "
 Bounds 2200,898,2451,1059
 BindToStyle FALSE
 TextFormat 0x0044
 Behavior 0x000251E1
 Symbol "lbl"
 TypeSize 8
 TypeFace "Arial"
}

Connector 75
{
 Style "Connector Style 1"
 Figure1 -1
 Figure2 -1
 EndPoint1 318,1150
 EndPoint2 499,1378
 SuppressEnd1 FALSE
 SuppressEnd2 FALSE
 End1 "null"
 End2 "null"
 End1Length 32
 End2Length 32
 LineWidth 3
 Behavior 0x00000000
}

Figure 76
{
 Text "media_ref"
 Bounds 982,1529,1180,1603
 BindToStyle FALSE
 TextFormat 0x0022
 Behavior 0x00024E12
 Symbol "rectangle"
 TypeSize 8
 TypeFace "Arial"
}

Figure 77
{
 Label TRUE
 Style "null"
 Text "exam_id\line performance_type\line test_type\line number_items\li-
ne passing_score\line scramble_items\line max_minutes_allowed"
 Bounds 125,1185,401,1410
 TextColor 4,4,4
 BindToStyle FALSE
 TextFormat 0x0044
 Behavior 0x000251E1
 Symbol "lbl"
 TypeSize 8
 TypeFace "Arial"
}

Connector 78
{
 Style "Connector Style 1"
 Figure1 -1
 Figure2 -1
 EndPoint1 304,853
 EndPoint2 1100,1188
 SuppressEnd1 FALSE
 SuppressEnd2 FALSE
 End1 "null"
 End2 "null"
 End1Length 32
 End2Length 32
 LineWidth 3
 Behavior 0x00000000
}

Figure 79
{
 Text "task"
 Bounds 2197,1081,2389,1145
 BindToStyle FALSE
 TextFormat 0x0022
 Behavior 0x00024E12
 Symbol "rectangle"
 TypeSize 8
 TypeFace "Arial"
}

Connector 80
{
 Style "Connector Style 1"
 Figure1 -1
 Figure2 -1
 EndPoint1 2012,859
 EndPoint2 2196,1116
 SuppressEnd1 FALSE
 SuppressEnd2 FALSE
 End1 "null"
 End2 "null"
 End1Length 32
 End2Length 32
 LineWidth 3
 Behavior 0x00000000
}

Figure 81
{
 Label TRUE
 Style "null"
 Text "*"
 Bounds 2092,963,2104,996
 BindToStyle FALSE
 TextFormat 0x0022
 Behavior 0x003A59D2
 Symbol "lbl"
 TypeSize 8
 TypeFace "Arial"
}

Figure 82
{
 Text "component"
 Bounds 1558,1364,1758,1438
 BindToStyle FALSE
 TextFormat 0x0022
 Behavior 0x00024E12
 Symbol "rectangle"
 TypeSize 8
 TypeFace "Arial"
}

Connector 83
{
 Style "Connector Style 1"
 Figure1 -1
 Figure2 -1
 EndPoint1 1361,1186
 EndPoint2 1565,1405
 SuppressEnd1 FALSE
 SuppressEnd2 FALSE
 End1 "null"
 End2 "null"
 End1Length 32
 End2Length 32
 LineWidth 3
 Behavior 0x00000000
}

Figure 84
{
 Label TRUE
 Style "null"
 Text "*"
 Bounds 1459,1282,1471,1315
 BindToStyle FALSE
 TextFormat 0x0022
 Behavior 0x003A59D2
 Symbol "lbl"
 TypeSize 8
 TypeFace "Arial"
}

Connector 85
{
 Style "Connector Style 1"
 Figure1 -1
 Figure2 -1
 EndPoint1 2408,859
 EndPoint2 2546,768
 SuppressEnd1 FALSE
 SuppressEnd2 FALSE
 End1 "null"
 End2 "null"
 End1Length 32
 End2Length 32
 LineWidth 5
 Behavior 0x00000000
}

Figure 86
{
 Label TRUE
 Style "null"
 Text "*"
 Bounds 2479,794,2491,827
 BindToStyle FALSE
 TextFormat 0x0022
 Behavior 0x003A59D2
 Symbol "lbl"
 TypeSize 8
 TypeFace "Arial"
}

Connector 87
{
 Style "Connector Style 1"
 Figure1 -1
 Figure2 -1
 EndPoint1 2405,859
 EndPoint2 2549,885
 SuppressEnd1 FALSE
 SuppressEnd2 FALSE
 End1 "null"
 End2 "null"
 End1Length 32
 End2Length 32
 LineWidth 3
 Behavior 0x00000000
}

Figure 88
{
 Label TRUE
 Style "null"
 Text "?"
 Bounds 2476,858,2493,891
 BindToStyle FALSE
 TextFormat 0x0022
 Behavior 0x003A59D2
 Symbol "lbl"
 TypeSize 8
 TypeFace "Arial"
}

Connector 89
{
 Style "Connector Style 1"
 Figure1 -1
 Figure2 90
 EndPoint1 2405,862
 EndPoint2 2412,856
 SuppressEnd1 FALSE
 SuppressEnd2 TRUE
 End1 "null"
 End2 "null"
 End1Length 32
 End2Length 32
 LineWidth 3
 Behavior 0x00000000
}

Figure 90
{
 Text ""
 Bounds 2405,849,2420,864
 FillColor 0,0,0
 BorderWidth 0
 BindToStyle FALSE
 TextFormat 0x0000
 Behavior 0x00327A12
 Symbol "null"
 TypeSize 8
 TypeFace "Arial"
}

Connector 91
{
 Style "Connector Style 1"
 Figure1 90
 Figure2 -1
 EndPoint1 2412,856
 EndPoint2 2540,1008
 SuppressEnd1 TRUE
 SuppressEnd2 FALSE
 End1 "null"
 End2 "null"
 End1Length 32
 End2Length 32
 LineWidth 3
 Behavior 0x00000000
}

Figure 92
{
 Label TRUE
 Style "null"
 Text "*"
 Bounds 2470,916,2482,949
 BindToStyle FALSE
 TextFormat 0x0022
 Behavior 0x003A59D2
 Symbol "lbl"
 TypeSize 8
 TypeFace "Arial"
}

Figure 93
{
 Text "media_ref"
 Bounds 1901,1306,2093,1380
 BindToStyle FALSE
 TextFormat 0x0022
 Behavior 0x00024E12
 Symbol "rectangle"
 TypeSize 8
 TypeFace "Arial"
}

Connector 94
{
 Style "Connector Style 1"
 Figure1 -1
 Figure2 -1
 EndPoint1 1758,1405
 EndPoint2 1901,1340
 SuppressEnd1 FALSE
 SuppressEnd2 FALSE
 End1 "null"
 End2 "null"
 End1Length 32
 End2Length 32
 LineWidth 3
 Behavior 0x00000000
}

Figure 95
{
 Label TRUE
 Style "null"
 Text "*"
 Bounds 1828,1354,1840,1387
 BindToStyle FALSE
 TextFormat 0x0022
 Behavior 0x003A59D2
 Symbol "lbl"
 TypeSize 8
 TypeFace "Arial"
}

Connector 96
{
 Style "Connector Style 1"
 Figure1 -1
 Figure2 -1
 EndPoint1 1761,1405
 EndPoint2 1901,1475
 SuppressEnd1 FALSE
 SuppressEnd2 FALSE
 End1 "null"
 End2 "null"
 End1Length 32
 End2Length 32
 LineWidth 3
 Behavior 0x00000000
}

Figure 97
{
 Label TRUE
 Style "null"
 Text "?"
 Bounds 1822,1424,1839,1457
 BindToStyle FALSE
 TextFormat 0x0022
 Behavior 0x003A59D2
 Symbol "lbl"
 TypeSize 8
 TypeFace "Arial"
}

Figure 98
{
 Text "description"
 Bounds 1900,1428,2092,1502
 BindToStyle FALSE
 TextFormat 0x0022
 Behavior 0x00024E12
 Symbol "rectangle"
 TypeSize 8
 TypeFace "Arial"
}

Connector 99
{
 Style "Connector Style 1"
 Figure1 -1
 Figure2 -1
 EndPoint1 821,1539
 EndPoint2 981,1562
 SuppressEnd1 FALSE
 SuppressEnd2 FALSE
 End1 "null"
 End2 "null"
 End1Length 32
 End2Length 32
 LineWidth 3
 Behavior 0x00000000
}

Figure 100
{
 Label TRUE
 Style "null"
 Text "*"
 Bounds 893,1535,905,1568
 BindToStyle FALSE
 TextFormat 0x0022
 Behavior 0x003A59D2
 Symbol "lbl"
 TypeSize 8
 TypeFace "Arial"
}

Figure 101
{
 Text "content"
 Bounds 2542,1062,2734,1126
 BindToStyle FALSE
 TextFormat 0x0022
 Behavior 0x00024E12
 Symbol "rectangle"
 TypeSize 8
 TypeFace "Arial"
}

Connector 102
{
 Style "Connector Style 1"
 Figure1 90
 Figure2 -1
 EndPoint1 2412,856
 EndPoint2 2541,1099
 SuppressEnd1 FALSE
 SuppressEnd2 FALSE
 End1 "null"
 End2 "null"
 End1Length 32
 End2Length 32
 LineWidth 3
 Behavior 0x00000000
}

Staples Section:

Staple 1
{
 Connector 61
 ConPos 123
 Figure1 62
 Fig1PosX 125
 Fig1PosY 123
 Figure2 -1
 Fig2PosX 0
 Fig2PosY 0
 OffsetX 0
 OffsetY 0
}

Staple 2
{
 Connector 47
 ConPos 141
 Figure1 48
 Fig1PosX 125
 Fig1PosY 123
 Figure2 -1
 Fig2PosX 0
 Fig2PosY 0
 OffsetX 0
 OffsetY 0
}

Staple 3
{
 Connector 45
 ConPos 113
 Figure1 46
 Fig1PosX 125
 Fig1PosY 123
 Figure2 -1
 Fig2PosX 0
 Fig2PosY 0
 OffsetX 0
 OffsetY 0
}

Staple 4
{
 Connector 35
 ConPos 107
 Figure1 36
 Fig1PosX 125
 Fig1PosY 123
 Figure2 -1
 Fig2PosX 0
 Fig2PosY 0
 OffsetX 0
 OffsetY 0
}

Staple 5
{
 Connector 33
 ConPos 124
 Figure1 34
 Fig1PosX 125
 Fig1PosY 123
 Figure2 -1
 Fig2PosX 0
 Fig2PosY 0
 OffsetX 0
 OffsetY 0
}

Staple 6
{
 Connector 85
 ConPos 142
 Figure1 86
 Fig1PosX 125
 Fig1PosY 123
 Figure2 -1
 Fig2PosX 0
 Fig2PosY 0
 OffsetX 0
 OffsetY 0
}

Staple 7
{
 Connector 64
 ConPos 135
 Figure1 65
 Fig1PosX 125
 Fig1PosY 123
 Figure2 -1
 Fig2PosX 0
 Fig2PosY 0
 OffsetX 0
 OffsetY 0
}

Staple 8
{
 Connector 66
 ConPos 137
 Figure1 67
 Fig1PosX 125
 Fig1PosY 123
 Figure2 -1
 Fig2PosX 0
 Fig2PosY 0
 OffsetX 0
 OffsetY 0
}

Staple 9
{
 Connector 91
 ConPos 127
 Figure1 92
 Fig1PosX 125
 Fig1PosY 123
 Figure2 -1
 Fig2PosX 0
 Fig2PosY 0
 OffsetX 0
 OffsetY 0
}

Staple 10
{
 Connector 72
 ConPos 144
 Figure1 73
 Fig1PosX 125
 Fig1PosY 123
 Figure2 -1
 Fig2PosX 0
 Fig2PosY 0
 OffsetX 0
 OffsetY 0
}

Staple 11
{
 Connector 55
 ConPos 138
 Figure1 56
 Fig1PosX 125
 Fig1PosY 123
 Figure2 -1
 Fig2PosX 0
 Fig2PosY 0
 OffsetX 0
 OffsetY 0
}

Staple 12
{
 Connector 57
 ConPos 125
 Figure1 58
 Fig1PosX 125
 Fig1PosY 123
 Figure2 -1
 Fig2PosX 0
 Fig2PosY 0
 OffsetX 0
 OffsetY 0
}

Staple 13
{
 Connector 70
 ConPos 147
 Figure1 71
 Fig1PosX 125
 Fig1PosY 123
 Figure2 -1
 Fig2PosX 0
 Fig2PosY 0
 OffsetX 0
 OffsetY 0
}

Staple 14
{
 Connector 68
 ConPos 140
 Figure1 69
 Fig1PosX 125
 Fig1PosY 123
 Figure2 -1
 Fig2PosX 0
 Fig2PosY 0
 OffsetX 0
 OffsetY 0
}

Staple 15
{
 Connector 87
 ConPos 140
 Figure1 88
 Fig1PosX 125
 Fig1PosY 123
 Figure2 -1
 Fig2PosX 0
 Fig2PosY 0
 OffsetX 0
 OffsetY 0
}

Staple 16
{
 Connector 99
 ConPos 124
 Figure1 100
 Fig1PosX 125
 Fig1PosY 123
 Figure2 -1
 Fig2PosX 0
 Fig2PosY 0
 OffsetX 0
 OffsetY 0
}

Staple 17
{
 Connector 80
 ConPos 119
 Figure1 81
 Fig1PosX 125
 Fig1PosY 123
 Figure2 -1
 Fig2PosX 0
 Fig2PosY 0
 OffsetX 0
 OffsetY 0
}

Staple 18
{
 Connector 83
 ConPos 130
 Figure1 84
 Fig1PosX 125
 Fig1PosY 123
 Figure2 -1
 Fig2PosX 0
 Fig2PosY 0
 OffsetX 0
 OffsetY 0
}

Staple 19
{
 Connector 96
 ConPos 128
 Figure1 97
 Fig1PosX 125
 Fig1PosY 123
 Figure2 -1
 Fig2PosX 0
 Fig2PosY 0
 OffsetX 0
 OffsetY 0
}

Staple 20
{
 Connector 94
 ConPos 137
 Figure1 95
 Fig1PosX 125
 Fig1PosY 123
 Figure2 -1
 Fig2PosX 0
 Fig2PosY 0
 OffsetX 0
 OffsetY 0
}

