ENDING THE YEAR ON GOOD FOOTING IS A GREAT POSTURE TO BEGIN 2017!

By Helen A. Remily
TCM TADLP

As we near the end of calendar year 2016, I would like to thank the community for the hard work and efforts expended in providing quality training and education to the Army. Since our last publication, the TADLP team has been busy with several management reviews, participating in Councils of Colonels meetings, conferences, such as I/ITSEC, and workshops, to include facilitating ongoing mobile pilot efforts. Noteworthy efforts during the FY16 4th Qtr consist of:

- TADLP awarding over 30 Task Orders under the Combined Arms Products for Distributed Learning Contract.
- TADLP members meeting with representatives from the Institute for Creative Technologies, Army Research Laboratory, PD DLS and Army Management Staff College to kick off the development of the Supervisor Development Course-Refresher (SDC-R) course. A critical Army civilian leadership endeavor, SDC-R will allow individuals who supervise DA civilians to complete mandatory SDC training using the DL refresher course vice talking the full-length DL Supervisor Course.
- The TADLP team briefing the “e2Books from Concept to Implementation” strategy to show how embedding doctrinal text with multimedia enhances the learning experience for Soldiers.
- The mobile team conducting Mobile Application Development training at several locations to assist proponents in improving their basic mobile application design and development skills.
- And finally, our TADLP team conducting a site visit to the Defense Innovation Unit Experimental (DIUx) site in San Jose, CA, to discuss the forthcoming Army Virtual Learning Environment contract’s technical requirements and observe virtual and augmented reality demonstrations. DIUx is part of an outreach effort to technology companies designed to help accelerate integration efforts to put technology into the hands of Service members and developers.

The TCM TADLP continues to be vigilant on many fronts to assist and augment the DL community to stay abreast of new technology and other developmental efforts in enhancing the learning experience of our talented Soldiers and Civilians.

Continue the great work and let us hear from you on what you are doing, so we can be a springboard for innovation and creativity in Army training and education. Wishing you and yours a safe and blessed holiday season! HR
COMING SOON
Updated Army DL SCORM Validation and Testing Policy for review and comment

The Army Distributed Learning (DL) Courseware Validation, SCORM Packaging, Review and Function Testing Policy is updated. The update includes the following:

- The addition of processes for conducting validation, SCORM packaging, review and function testing of DL products on the Enterprise Lifelong Learning Center (ELLC)
- Clarification of the processes for validation and reporting of results for Army DL that will be fielded on the Army Learning Management System (ALMS) or the ELLC
- Platform-specific flowchart diagrams that show processes and the organization or activity responsible for actions in the process

The updated policy document and its appendices will be released for review and comment by proponent schools, Centers of Excellence, and other DL-producing activities in early December. The updated policy will be released and in effect for all Army DL, whether it is produced in-house, or through development effort with a contractor. Please take the time to review the document and provide comments.

The TCM TADLP POC for this action is Ms. Tamara Krepps, (757) 878-5483, DSN 826.

Nominating products for development using the TCM TADLP IDIQ contract

Every year, TCM TADLP requests that proponents submit nominations for product development using the TCM TADLP indefinite delivery, indefinite quantity (IDIQ) contract. Proponents are asked to submit their nominations by answering a series of questions on the TCM TADLP nomination website at https://www.atsc.army.mil/auth/authenticated/registration/ Proponents must be registered in order to be able to use the nomination website.

Please contact Ms. Lisa Brock at 757-878-5940 or hilda.e.brock.civ@mail.mil to register your name in order to use the website. After TCM TADLP receives all nominations by the suspense date (which varies slightly from year to year), staff members prioritize and vet the nominations and then submit them to CG TRADOC for approval.

For FY 18, TCM TADLP will be requesting nominations in January 2017 with a suspense date of late March 2017.

If you have a nomination you would like to submit and you are new to this process, please contact Ms. Trientje Tippens for information at 757-878-5878 or Trientje.a.tippens.civ@mail.mil.
INSTRUCTIONAL SIMULATIONS
An engaging method to train in complex operational environments

By Dr. Tammy Bankus
TRADOC G-3/5/7 Training Integration Division

The Army is constantly challenged to meet the growing demands of a complex operational environment, requiring Army training developers to use innovative learning strategies and activities that facilitate training and education in complex domains. Instructional simulations provide a way to solve complex problems in a safe environment. However, simulations are often criticized for their overreliance of discovery learning methodology that provide limited instructional support for novice learners. With sound instructional design framework, simulations allow the user to experiment with solving complex problems, in a safe environment. Simulation environments either teach “about something” or “how to do something” (Alessi, 1988). This article reviews simulation types as possible heuristics to be used as a component of an effective instructional overlay for designing Army instructional simulations. In today’s technological environment, simulations are continuously pushing the boundaries of “how” and “what” can be presented in training and education. Simulations are proposed to be intrinsically motivating learning environments, which offer a degree of fidelity and interactivity that might not be available through the use of other media types (Alessi, 1988; Duchastel, 1988). They can simplify or enhance details and features to be learned. They are appropriate for acquisition and application of knowledge and skills, as well as, for the assessment of learning.

Although several approaches to categorize instructional simulations have been attempted in research literature (Reigeluth & Schwartz, 1989; Gredler, 1994), this article will focus on Alessi’s (1988) four identified categories of simulations based on their instructional purpose: physical, process, procedural, and situational. A physical simulation is used to teach “about” an object and its behavior (e.g., exploring equipment). In contrast, a procedural simulation teaches “how to” (e.g., conducting PRT), whereas the purpose of a situational simulation is to teach “how to” something within a social system (e.g., counseling skills).

Therefore, instructional simulations either teach “about” something or “how to do” something. The underlying model, presentation, user actions, and system feedback will vary based on this simulation type.

From the Research
“Simulations... intrinsically motivating learning environments...”
By classifying simulations into these categories, it can make it easier for an Army training developer to understand the purpose and the underlying models that make up each type, allowing designers to maximize the instructional and assessment qualities of the simulation. For instance, behavioral factors and interpersonal skills that utilize social modeling techniques are more important for a situational simulation then for a procedural type of simulation. Although, this is a simple way to represent simulations for instructional purposes, in reality an instructional goal may require the use of more than one type of simulation in a given learning session. Regardless, each type of simulation has specific qualities that separate it from the other types of simulations.

The type of simulation will also influence the emphasis of different simulation design features. For instance, a simulation that is “about something”, such as physical and process simulation, will be designed with a greater emphasis on the ability to manipulate certain objects or variables within the simulation. This will allow the learner to see how their results change the simulation properties. In contrast, simulations designed to teach “how to do” something, like procedural and situational simulations, have an emphasis on sequencing actions for the accomplishment of a goal. These types of simulations are commonly used as lab simulations, diagnostics, or communication and interpersonal simulations (Gredler, 1994).

There is a tendency to get caught up with all the surface features of the technology and not consider the instructional design components that make simulations effective learning environments (Clark, 1994; Tennyson, 1994). An instructional overlay can provide guidelines for implementing a guided discovery learning environment that utilizes generative instructional strategies to promote active mental processing. The first step in designing an instructional overlay is to understand the learning objectives, including task and learner analysis, that define the purpose of the simulation (Reiguluth & Schwartz, 1989). The choice to use a specific type of simulation is directly impacted by the learning goals. Learning goals in simulations will influence both direct and indirect embedded strategies and activities. Once this process is complete, this information will help determine the type of simulation to be designed.

In choosing the type of simulation, consideration should also be given to choosing appropriate generative instructional strategies and activities (Jonassen, 1988). It is possible to develop generative instructional prescriptions that can be embedded as an instructional overlay for a simulation. These learning prescriptions, such as generative learning strategies, are designed to be used by students to help them make meaningful connections between existing knowledge and new information. This is accomplished by requiring the learner to build schemas through the active application of new knowledge to existing knowledge. However, the strategies used will vary based on the simulation type. The presentation of information also impacts the way that generative strategies are
Simulations continued from page 4.

embedded knowledge attributes (declarative or procedural), learner attributes, and simulation attributes will affect how the learner encodes information and subsequently uses knowledge. Table 1 is a combination of simulation types based on their learning purpose, with the integration of prescriptions based on suggested generative learning strategies and activities.

Recommendations:
- Embed generative learning strategies that require the learner to relate new information to their existing knowledge (i.e. graphic organizers, probing questions that ask the learner to improve on or create a new method for performing an action).
- Ensure the simulation provides cognitive tools such as memory aids (mnemonics, paired associations, aid in creating mental images) for the learner.
- Link the underlying architecture (models) to specific learning objectives that will be met in the simulated environment.
- Adjust simulation fidelity and structure to meet the needs of the learner (i.e. novice versus experienced).

References:

Tammy Bankus is a Senior Instructional Systems Specialist at Headquarters TRADOC G-3/5/7 Training Integration Division. Her interests are in the areas of educational psychology, instructional design, and educational technology. She has a Ph.D. in Instructional Design and Technology, Curriculum and Instruction from Old Dominion University, Norfolk, VA.

Table 1. Simulation Types with Generative Learning Strategies

<table>
<thead>
<tr>
<th>Simulation Type</th>
<th>Strategies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical — “about objects”</td>
<td>Recall: facts related to concepts about the object, review Integration: exemplifying, paraphrasing principles and rules for the object Organization: categorize objects, outline principles and rules about objects Elaboration: elaborate additional details about the objects, and provide a synthesis of the objects</td>
</tr>
<tr>
<td>Process: “about phenomenon”</td>
<td>Recall: facts related to concepts about the phenomenon, review the phenomenon Integration: exemplifying (statement of the principle and rule with examples), paraphrasing the principles and rules about the phenomenon Organization: Outline principles and rules about a phenomenon, analysis of key ideas about the phenomenon Elaboration: add more information about the phenomenon concepts, principles and rules, provide a synthesis of the phenomenon</td>
</tr>
<tr>
<td>Procedural: “How to do something”</td>
<td>Recall: rehearse the steps of how to do something, recall the principles and rules for performing the procedure Integration: practice performing the procedure, paraphrase how to do the procedure in learners own words Organization: map out steps in the procedure, outline procedural steps Elaboration: relate the procedure to other procedures performed in the past; create analogies for the procedure</td>
</tr>
<tr>
<td>Situational: “How to do something in a social situation”</td>
<td>Recall: review concepts about how to act in a social situation, recall how the behavior was modeled in the simulation Integration: paraphrase how the relationships in the situation interacted, give metaphors about how to interact in the situational simulation Organization: create concept maps that depict how to interact within the social situation, categorize different interactions Elaboration: synthesize the communication strategy used in simulation, develop a model of the behavior in a different, but similar situation</td>
</tr>
</tbody>
</table>
Using blended learning to support Army ALM

By Sandra DeLozier
US Army Medical Department Center and School, Instructional Technology Division

You—along with many others—may be asking, “Blended learning—well, what exactly is that and what does it have to do with Distributed Learning (DL)?” It is important to understand that blended learning is a term that’s been used quite a bit lately, but has many different definitions and range of possibilities. In general, though, blended learning can be summarized as an education or training program that uses a combination of face-to-face (F2F) and online delivery methods in order to create a more robust learning environment for students. With blended learning, students can get the best of both worlds—support of classroom learning along with the flexibility and benefits of DL.

Several research studies have demonstrated that incorporating blended learning into course design can contribute to improved learning outcomes for students. Blended learning can also afford some of these other benefits:

- Flexible access to material
- The building of a learning community of practice
- Effective use of resources
- Maximization of valuable F2F classroom time for higher-level discussion, application, and practice

At the Army Medical Department Center and School (AMEDDC&S), the Instructional Technology Division (ITD) is actively working to access some of these benefits through the use of appropriate blended-learning design constructs. The key here is the word “appropriate.” Experience has shown that technology use, in and of itself, is not necessarily better, and high-tech solutions do not always produce better learning outcomes. Therefore, it is incumbent on instructional designers to carefully consider the strengths and weaknesses associated with any approach.

AMEDDC&S ITD has already successfully designed and implemented several blended learning solutions. One is for an introductory Embedded Behavioral Health (EBH) course intended to introduce civilian behavioral health providers to unfamiliar military aspects and resources for their job. With the EBH course, DL and F2F instructional elements were integrated into a cohesive and comprehensive product that was able to be used at the learner point of need—that is, before the learner attends the resident course, at which point they are expected to already understand military regulations and ways. The EBH curriculum solution fit into the first of six models of blended learning that Friesen has identified: the face-to-face driver model, whereby online learning will be used for remediation or supplementation of traditional classroom instruction.

“...blended learning… best of both worlds…”

Blended learning continues on page 7.
face-to-face driver model, whereby online learning will be used for remediation or supplementation of traditional classroom instruction.

The F2F driver model is the most common blended-learning model used, and ITD has found that it can be easily adapted to courses that have already been developed as well as those being newly designed and built. Thus, it is a perfect way to begin to introduce technology into the curriculum and profit from its benefits. It is important to understand that the DL can be used, not just in a phased approach—i.e. DL as a prerequisite to a resident course—but also in conjunction with F2F time. For example, a “rotation model approach” can be designed in which students use both online and classroom instruction at any given time. Important in this model is that DL may be used during the F2F time as well. A blended-learning construct for an AMEDDC&S’s Critical Care Flight Program (CCFP) reflects this design philosophy. Online tutorials and scenarios are used in concert with resident training to enrich the training and provide further practice and learning support both prior to and during in-class work. Learners alternate between uses of both training resources. AMEDDC&S’s Warrior Transition Unit (WTU) Personnel Orientation Course is also beginning to experiment with a rotation-model approach. In this design construct, DL is used to provide a knowledge foundation prior to the resident portion, but continues to be used throughout the course as well. The DL begins the process of raising the cognitive problem solving skills of the learners and also the process of building a community of practice. With the course established on a BlackBoard hosting site, students are required to participate in discussions-board assignments and talk through problem scenarios, learning who their team members are and how to use their expertise—an important aspect of the WTU job. The BlackBoard site remains open throughout the course and students continue to participate in online assignments and use the available resources available. It is planned to also incorporate a Wiki collaborative assignment that can provide a vehicle for students to exercise their knowledge learned and apply it to a higher cognitive activity.

It is important to understand that most blended-learning solutions do not necessarily follow a single model approach. Generally, depending on the many requirements of the situation (learning, time, resource, hosting, etc.), blended-learning designs become individualized. AMEDDC&S ITD has found that there are many potentials in blended learning that should be explored in the effort to update methodologies in support of ALM.
For example, many organizations are now working with the instructional benefits of “flipping the classroom,” an approach that works to harness the power of video instruction to give learners first exposure to new material outside of class. Valuable F2F time when learners have the support of instructors and peers can then be used to push the learning to higher cognitive levels of assimilation and application through problem-solving, discussion, debate, or hands-on activities.

As a final note in the discussion of methodological constructs, it is important to not make assumptions. Instructional designers need to remember that “an approach that works for one module may not work for another. Students in different disciplines may have dissimilar preferred learning styles...so they may require different teaching and learning methods. It is also important to provide sufficient training for the students and for academics who are new to blended learning.”

Support and infrastructure policy, planning, and resources are all key to providing blended-learning initiative success, and the idea of resources should never be limited to just equipment and technology, but also include, very importantly, human resources for developing and managing instructional change.

SANDRA DELOZIER is a team lead for the Instructional Technology Division of the AMEDD Center and School. She has had extensive experience in the design and development of technology-enhanced learning products. Her special interest is in designing blended learning solutions that augment students' educational/training experience.
CP-32 milBook

Redesign supports you and your professional endeavors

Career Program 32 Office
JBLE, Fort Eustis, VA

There’s a lot going on these days in the Army Career Program 32 Office—happenings every CP-32 careerist should know about and keep up with.

It is our vision to be the Department of the Army’s premier Career Program committed and responsive to the CP-32 workforce, focused on stewardship of resources and being engaged with educating, training, and developing Army Civilians to execute the Army mission. Our mission is to develop and provide life cycle career management resources to develop a competent, adaptive Civilian workforce that keeps pace with learning innovations and technological advancements and is able to incorporate this knowledge into capability and doctrine development documents as well as training and education curricula.

Recently, we have redesigned the CP-32 milBook page. Each program now has a dedicated portal page with links to program documents and information. Take time at least once every week to see what is new and connect with the career program office that is there to support you in your professional endeavors.

You can access the site through these links:
- http://go.usa.gov/cS33m

Our many programs provide professional development opportunities year round. In order to improve the utilization of programs, we have recently restructured our communication strategy, by offering bi-weekly profiled communications, monthly ACPM bulletins, and monthly lunch and learns to serve our audience better. Connect with us and explore the wealth of opportunities that are available for your career development!
Look for more Army mobile apps

By Mike Casey
Courtesy of ARNEWS, U.S. Army News Service

FORT LEAVENWORTH, Kan. -- The Army is picking up the pace to make more training mobile applications available for Soldiers' smart phones and computer tablets.

Recently a team of Soldiers and civilians at Fort Eustis, Va., started using software to ensure Army mobile apps meet government security requirements and other standards.

"With this new vetting software, we can expedite getting proponent-approved and cyber-secure mobile apps to the force," said Lt. Col. Joe Harris, TRADOC Capability Manager-Mobile (TCM Mobile). "Soldiers are getting accurate, up-to-date training content."

TCM Mobile has used the software to vet nearly 80 mobile applications for infantry training, gunnery practice, reporting sexual harassment and other topics. Its effort is part of a broader Army campaign to get training and educational materials to Soldiers when and where they need them.

Last year TCM Mobile started posting mobile applications to the TRADOC Application Gateway hosted by TRADOC Capability Manager er, Army Training Information System as well on commercial sites such as iTunes, Google Play and Windows Phone.

To make sure the applications met standards, TCM Mobile relied on a private company or another defense organization.

"The process was expensive and time consuming," Harris said. "We decided to get our own vetting software from a private company. Now we can do the vetting ourselves. Our goal is have 200 or more mobile applications, vetted, approved and posted by the end of next year."

TCM Mobile also is certifying units' applications for wider use in the Army.

"A number of Army organizations developed mobile applications for themselves," said Matt Maclaughlin, TCM Mobile's senior mobile instructional design specialist. "By vetting these units' applications, we're building a validated, secure, mobile application library to help Soldiers throughout the Army."

In addition to using the software, TCM Mobile utilizes a human-in-the-loop check to ensure the applications meet standards.

This article was published Nov. 22, 2016 by ARNEWS, U.S. Army News Service, www.army.mil. TCM Mobile is part of the Combined Arms Center -- Training at Fort Leavenworth, Kan. CAC-T develops training requirements, fields training systems, delivers leader training and sustains training capabilities to support Army institutional and operational training of Soldiers, leaders, and units to successfully execute Unified Land Operations in complex, ambiguous environments.

During my presentation at the Distributed Learning Conference for 2010, I challenged the community to rethink the term “level” of interactivity. For me, the word level with the word interactivity created an oxymoron. Synonyms for the word level are flat, even, and smooth. While there are no synonyms for interactivity it does connote things actively working together such as the learner with the content.

At that conference, I recommended degree of interactivity. Degree speaks to a scale of intensity which better defines engagement with the content. I believe the best definition is the amount or degree of intensity the user displays when interacting with the content.

Why do I think so? Consider a learner who is asked to read a book as an assignment. Reading a book is passive, a level 1 activity. It depicts the slow deliberate transfer of knowledge from the page to the cognitive recesses of the learner’s brain. But what about an interactive digital publication with embedded media such as video and audio? En-

gages the imagination. Reading the words while listening to the sounds of battle intensifies the experience perhaps integrating emotion into the imagination of the reader. While reading the learner can enhance the transfer of knowledge engaging the visual and aural senses in addition to verbal learning to better transfer knowledge in a technology enabled environment.

The second challenge offered to the community during my presentation was the addition of a fifth degree of interactivity. Many may believe that four degrees are just fine. Many may argue that little is developed at four as it is, so why make another? The Department of Defense defined levels of interactivity about 1999. They actually referred to them as the “degree of student involvement in the instructional activity.” Great minds, eh?

The interactivity level was tied to the learning level so that you could have reading a book with low production, text on the screen, or reading a book with high production, video and audio. The combination of interactivity and production gave us a way to estimate the costs and increase the degree of involvement.

The technology of 1999 was very different than that of today. The concept of engaging with content was little more than clicking or hovering over buttons. Today’s technology offers full immersion into digital environments. In many cases the technology provides for interaction by engaging four of the five
human senses with olfactory still a bridge too far.

With new technology and modes of delivery, the term degree of user interactivity is a better fit. Overarching all is the learner’s control (involvement) over the sequence and pace of Instruction.

This new paradigm asks three questions of the content designer:
- What is the learner doing?
- How does the learner move through the learning environment?
- What does the learner see, hear, or do that supports learning?

Zero

Why zero you ask? In today’s technology, the passive level of interactivity is accomplished within the authoring tools, simple key strokes to accomplish all the interaction within the user interface. Text on the screen and simple graphics, a video and/or narration complete this level.

One

Degree of interactivity one, asks the learner to actively demonstrate or perform a task or skill. This requires a technical environment (content) complete with practice exercises as close to real experiences as possible. Computer software simulations, electrical troubleshooting, combat lifesaving are all examples of the types of practice exercises that might be developed as degree one.

Two

Degree two challenges to learner to apply acquired knowledge, to simulate an acquired process, or to analyze results gained from either of those activities or to compare results against activities.

Three

Visual input increases the degree of interactivity three. Processes are completed by providing visual input such as 3D models that can change with data from the learner who then has to respond to the changes and resulting consequences.

The learner does not receive instructional cues, the environment is as close to real life as possible. The learner makes choices and receives feedback in the same way it is received in life. Subsequent actions are based on the learner’s choices and right or wrong they are followed through to a natural conclusion.

Four

The highest degree of interactivity is four. At this level complex movements anticipated by the learner are scripted to move the learner through content ensuring exposure to embedded simulations that record interactions, inputs,
or choices made by the learner. There is total learner control of movement with all actions reported back to the learning management system.

In summary, the five degrees of interactivity will be part of the new centralized contract for Army Distributed Learning. The contract is due for award around the end of April 2017. The degrees were used to prepare the cost estimate for the contract. The concept will be socialized in our next Program Management Review (PMR) and in upcoming articles related to DL development. The next step will be to socialize with other services to gain buy in for the change in number and name of interactivity levels.

VISUAL DEPICTIONS OF INTERACTIVITY LEVELS

Zero

Read

Listen

View

In level zero the learner is the passive receiver of content. The could be reading text on a page, listening to a podcast, or watching video content on a screen is also considered passive learning. By combining media with text on a page, the learner becomes more engaged which increases the transferability of knowledge. The production value of one hour of level one is increased with the additional media.

Hours of Production per Finished Hour of IMI
VISUAL DEPICTIONS OF INTERACTIVITY LEVELS

One

In degree of interactivity one the learner performs a task, demonstrates a skill, or initiates a low level simulation.

The learner is guided through the correct steps of the procedure and allowed to try it unassisted. The learner can control the sequence and pace of the presentation only if it doesn’t interfere with learning the process. The design should also allow the learner to select and access additional content to make give it meaning. Pictures and sounds are realistic.

200 300 400

Hours of Production per Finished Hour of IMI

Two

In degree of interactivity two, the learner simulates action, apply skills, analyze results.

The learner controls the sequence and pace of the presentation with few instructional cues. Movement through the environment closely simulates real life.

The environment is realistic with pictures and sounds to help the learner assimilate.

200 300 400

Hours of Production per Finished Hour of IMI

Interactivity continues on page 15.
VISUAL DEPICTIONS OF INTERACTIVITY LEVELS

Three

In degree of interactivity three, dynamic visualizations that simulate complex processes and abstract concepts; allow learners to change input variables by entering data or by manipulating visual objects and to observe the consequences of these changes.

Movement through the environment simulates real life, no instructional cues, adapts with input from others.

Engage all the senses!

Four

In degree of interactivity four, scripted interaction that allows for complex movements. Branching logic that moves the learner to another pace or track of instruction.

Embedded simulations and/or agents/avatars that react adaptively to learner input/choices.

Feedback is by sense of touch.

Learner is allowed to move freely through a gaming scenario with all actions recorded and reported back to a management system.

Learner is allowed to control simulated environment with all actions recorded.

Hours of Production per Finished Hour of IMI
DL Star Article Submission

The DL Star is always looking for timely and relevant articles to share with the TRADOC and TADLP communities of practice. The deadline for the next DL Star is 28 February 2017. Please consider sharing your experiences and expertise with your colleagues throughout the Army. Here are some simple steps to help guide you in the submission process:

- Use “active” voice (p.6) AR 25-50
- Be brief; limit to 800 words
- Proofread submissions
- Include copyright permissions, when appropriate
- Submit articles to: usarmy.jble.tradoc.mbx.atsc-tcm-tadlp@mail.mil; or call 757-878-1725 for more

Have DL Star Ideas?

Then consider sharing your DL development projects with the TADLP community of practice through the TADLP website.

The Content Showcase is where TCM TADLP highlights innovative DL products developed in partnership with Army proponents and courseware developers.

Send any inquiries about showcasing your projects to the TCM TADLP email: usarmy.jble.tradoc.mbx.atsc-tcm-tadlp@mail.mil.

You may also call 757-878-4516 or 757-878-1725 for more information.

THINK DL INNOVATION